在第二次世界大战期间,出于战争的需要,各大国加强了科学技术的研究,促成了以核能、电子计算机、宇航为代表的三大新技术革命的兴起,推动了20世纪中叶以后的第三次技术革命。第三次技术革命也称为新技术革命,它是由开发“人脑”的教育产业和制造“电脑”的科研产业共同作用的成果。它使社会的产业结构发生了根本性的变革:先进的农业生产技术取代了传统农业,技术密集型工业取代了传统劳动密集型工业,全新的产业不断涌现。
信息论的创始人香农(Claude Elwood Shannon,1916—2001,见图1-16)出生于美国,1936年毕业于密执安大学,获数学和电子工程学士学位;1940年获得麻省理工学院数学博士学位和电子工程硕士学位。1941年,他加入了贝尔实验室数学部,与当时贝尔实验室的许多著名科学家一起工作。他受到前辈工作的启示,创造性地继承了他们的事业。在信息领域中钻研了8年之后,于1948年在《贝尔系统技术杂志》上发表了他的长篇论著《通信的数学理论》。第二年,他又在同一杂志上发表了另一名著《噪声下的通信》。
图1-16 信息论的创始人香农
在这两篇论著中,他解决了过去许多悬而未决的问题,经典地在阐明了通信的基中理论,提出了过去通许信多悬系而统未的模决型的,问给题出,经了信息量的数学表达式,解决了信道容量、信源统计特性、信源编码、信道编码等有关精确地传送通信符号的基本技术问题。两篇文章成了现代信息论的奠基著作。而香农也一鸣惊人,成了这门新兴学科的创始人。
信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。他建立的信息理论框架和术语已经成为技术标准。他的理论在通信工程应用中立即获得成功,并推动了当今信息时代的技术发展。
贝塔朗菲(Ludwig von Bertalanffy,1901—1972,见图1-17)是现代著名的理论生物学家、一般系统论的创始人。他生于奥地利首都维也纳附近的阿茨格斯多夫。1926年获维也纳大学哲学博士学位,毕业后在该校任教;1948年任加拿大渥太华大学医疗系系主任、教授;1969年任纽约州立大学理论生物学研究中心教授。
图1-17 系统理论创始人贝塔朗菲
20世纪20年代,贝塔朗菲在研究理论生物学时,用机体论生物学批判并取代了当时的机械论和活力论生物学,建立了有机体系统的概念,提出了系统理论的思想。从20世纪30年代末起,贝塔朗菲就开始从有机体生物学转向建立具有普遍意义和世界观意义的一般系统理论。1948年,他发表了《关于一般系统论》,这可以看成他创立一般系统论的宣言。
一般系统论是研究系统中整体和部分、结构和功能、系统和环境等之间的相互联系、相互作用问题。贝塔朗菲研究了机体系统、开放系统和动态系统的理论,试图以机体系统理论解释生命的本质。他还把开放系统作为系统的一般情形,全面考虑了开放系统的输入、输出和状态等基本因素,科学地解释了与开放系统有关的稳态、等终极以及有序性的增加等问题。关于动态系统,他用数学的方法描述了系统的各种性质,如整体性、加和性、竞争性、机械性、集中性、终极性等。所有这些工作,为他的一般系统论奠定了理论基础。
控制理论的创始人维纳(Norbert Wiener,1894—1964,见图1-18)出生在美国密苏里州哥伦比亚市的一个犹太家庭,父亲是哈佛大学的语言教授。维纳自幼聪慧过人,12岁考入大学学习,15岁获数学学士学位,其后进哈佛大学做了一年的动物学研究生,觉察自己不适合在实验室工作而改修哲学,19岁时以“关于数理逻辑”的论文获得了哈佛大学数学和哲学两个博士学位。
图1-18 控制理论的创始人维纳
1933年,维纳由于有关陶伯定理的工作与莫尔斯分享了美国数学学会5年一次的博赫尔奖。同时,他当选为美国科学院院士。1935—1936年,他在中国清华大学做访问教授期间与电机工程系教授李郁荣合作研究傅里叶变换滤波器。
维纳对科学发展作出的最大贡献是创立控制论。这是一门以数学为纽带,把研究自动调节、通信工程、计算机科学、计算技术、神经生理学和病理学等学科的共性问题而形成的边缘学科。1947年10月,维纳写出划时代的著作《控制论》。这部著作1948年出版后,立即风行世界。维纳的深刻思想引起了人们的极大重视。它揭示了机器中的通信和控制机能与人的神经、感觉机能的共同规律,为现代科学技术研究提供了崭新的科学方法。它从多方面突破了传统思想的束缚,有力地促进了现代科学思维方式和当代哲学观念的一系列变革。
电工技术和无线电技术的发展是电子计算机诞生的前提。20世纪初,为了提高供电系统的安全性,在电工技术中已普遍使用继电器等器件对电气设备进行保护控制。20世纪30年代,无线电广播已遍布全球,这就要求电子电路、元器件生产技术提高到新水平。而第二次世界大战期间,出于战争需要快速计算炮弹弹道轨迹,则是促使计算机诞生的直接原因。
1938年,一位在柏林飞机公司担任统计工作的德国人——楚泽出于“想偷懒”的动机,设计制造了一台名为“Z1”的由程序控制的计算机,代替人工完成部分统计工作。经过3年的试用和改进,于1941年他设计并制造出一台由电子管与机械继电器控制的计算机,命名为“Z3”,其计算速度有所提高。随后,在欧洲陆续设计出一些机械计算机,代替人工计算。
ENIAC(电子数字积分计算机的简称,英文全称为Electronic Numerical Integrator and Computer)是世界上第一台电子计算机,它于1946年2月15日在美国宣告诞生,如图1-19所示。
图1-19 世界上第一台电子计算机ENIAC
第二次世界大战期间,宾夕法尼亚大学莫尔电机工程学院的莫希利(John Mauchly,见图1-20)于1942年提出了试制第一台电子计算机的初始设想——“高速电子管计算装置的使用”,希望用电子管代替部分继电器以提高机器的计算速度。
图1-20 莫希利博士
美国陆军军械部在马里兰州的阿伯丁设立了“弹道研究实验室”。美国军方要求该实验室每天为陆军炮弹部队提供6张火力表以便对导弹的研制进行技术鉴定。每张火力表都要计算许多条弹道,而每条弹道的数学模型是一组复杂的非线性方程。这些方程组没有办法求出准确解,只能用数值方法近似地进行计算。按当时的计算工具,实验室即使雇用多名计算员加班加点工作也要很长时间才能算完一张火力表。在战争年代,这么慢的速度怎么能行呢?
美国军方得知这一情况,马上拨专款大力支持,成立了一个以莫希利、埃克特(Eckert)为首的研制小组开始研制工作。时任弹道研究所顾问、正在参加美国第一颗原子弹研制工作的数学家美籍匈牙利人冯·诺依曼(J. Nron Neumann,1903—1957,见图1-21)带着原子弹研制过程中遇到的大量计算问题,在研制过程中期加入了研制小组,他对计算机的许多关键性问题的解决作出了重要贡献,从而保证了计算机的顺利问世。
图1-21 冯·诺依曼
ENIAC体积庞大,耗电惊人。它使用了1.8万多个电子管和1500多个继电器等元件,占地170m 2 ,质量达30t,耗电140kW,运算速度不过5000次/s加、减法运算(现在的超级计算机的速度最快每秒运算达数万亿次),但它比当时已有的计算装置要快1000倍,而且还有按事先编好的程序自动执行算术运算、逻辑运算和存储数据的功能。ENIAC宣告了一个新时代的开始。从此计算机科学的大门被打开。
冯·诺依曼是20世纪最伟大的科学家之一。他出生于匈牙利首都布达佩斯的一个犹太人家庭。他6岁能心算8位数除法,8岁学会微积分,12岁读懂了函数论。通过刻苦学习,在17岁那年,他发表了第一篇数学论文,不久后又掌握7种语言,还在最新数学分支——集合论、泛函分析等理论研究中取得突破性进展。22岁时,他在瑞士苏黎世联邦工业大学化学专业毕业。一年之后,他摘取布达佩斯大学的数学博士学位,转而研究物理,为量子力学研究数学模型,他在理论物理学领域占据了突出的地位。1933年,他与爱因斯坦一起被聘为普林斯顿大学高级研究院的第一批终身教授。
“电子计算机之父”的桂冠,被戴在数学家冯·诺依曼头上,而不是ENIAC的两位实际研究者,这是因为冯·诺依曼提出了现代计算机的体系结构。在ENIAC尚未投入运行前,冯·诺依曼就看出这台机器致命的缺陷,其主要弊端是程序与计算机两者分离。程序指令存放在机器的外部电路里,需要计算某个题目,必须首先用人工接通数百条线路,需要几十人干好几天之后,才可进行几分钟的运算。
1945年6月,冯·诺依曼与戈德斯坦、勃克斯等人联名发表了一篇长达101页纸的报告,即计算机史上著名的“101页报告”,报告明确规定了计算机的五大部件:计算器、逻辑控制装置、存储器、输入装置和输出装置,并用二进制替代十进制运算。EDVAC方案的革命意义在于“存储程序”,以便计算机自动依次执行指令。人们后来把这种“存储程序”体系结构的机器统称为“诺依曼机”。由于种种原因,莫尔小组发生令人痛惜的分裂,EDVAC机器无法被立即研制。1946年6月,冯·诺依曼和戈德斯坦、勃克斯回到普林斯顿大学高级研究院,先期完成了另一台ISA电子计算机(ISA是高级研究院的英文缩写),普林斯顿大学也成为电子计算机的研究中心。直到1951年,在极端保密的情况下,冯·诺依曼主持的EDVAC计算机才宣告完成,它不仅可应用于科学计算,还可用于信息检索等领域,主要缘于“存储程序”的威力。
英国数学家阿兰·图灵( Alan Turing,1912—1954,见图1-22)生于伦敦,他是计算机科学的先驱者、破译纳粹密码的关键人物。1936年,他的研究成果——数理逻辑和计算理论为计算机的诞生奠定了基础;许多人工智能的重要方法也源自这位伟大的科学家。他对计算机的另一重要贡献在于他提出的有限状态自动机,也就是图灵机的概念。对于人工智能而言,他提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那它就是一个完全意义上的智能机,和人没有区别了。阿兰·图灵的杰出贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。
图1-22 阿兰·图灵
1952年年底,美国国际商用机器公司(IBM)的第一台IBM 701在纽约问世。
1946—1958年生产的第一代计算机使用真空电子管,其体积庞大,耗电量惊人。
1959—1963年生产的第二代计算机使用了晶体管。1959年,美国菲尔克公司研制的第一台晶体管计算机体积小、质量轻、耗电省,而运算速度提高到每秒几十万次。
第一代、第二代计算机主要使用在军事、科研、政府机关等机构,用于火箭、卫星、飞船等设计与发射、气象预报、飞机制造、航空业务管理等领域。
1964—1970年生产的第三代计算机使用了集成电路代替分立元件晶体管。1964年,美国IBM公司研制的第一台通用集成电路3690计算机,其运算速度达到每秒千万次,成本大规模降低,计算机开始进入普及阶段。
1971年至今生产的第四代计算机使用了大规模与超大规模集成电路元件。1980年全球拥有的微型计算机超过1亿台。计算机开始进入社会化、个人化阶段。机关、学校、企业及个人开始购买并使用计算机。
当前计算机的发展趋势是微型化、巨型化、网络化和智能化。未来计算机的发展趋势有高速超导计算机、光计算机、生物计算机、DNA计算机等更快速、智能化程度更高的计算机。
图1-23 阿塔纳索夫
图1-24 克利福特·贝瑞
到底是谁发明了世界上“第一台电子计算机”也存在争议。据报道,美国爱荷华州立大学约翰·文森特·阿塔纳索夫(John Vincent Atanasoff,见图1-23)教授和他指导的研究生克利福特·贝瑞(Clifford Berry,见图1-24)先生在1937—1941年开发的“阿塔纳索夫-贝瑞计算机(Atanasoff-Berry Computer, ABC)”才是世界上第一台电子计算机。20世纪30年代,保加利亚裔的阿塔纳索夫在爱荷华州立大学物理系任副教授,为学生讲授物理和数学物理方法等课程。在求解线性偏微分方程组时,他的学生不得不面对繁杂的计算,那是一项要消耗大量时间的枯燥工作。阿塔纳索夫于是开拓新的思路,尝试运用模拟和数字的方法来帮助他的学生们处理那些繁杂的计算问题。阿塔纳索夫和克利福特·贝瑞两人经过了无数次挫折与失败后,终于在1939年造出来了一台完整的样机,证明了他们的设想是正确而可行的。人们把这台样机称为ABC,代表的是包含他们两人名字的计算机。这台计算机是电子与电器的结合,电路系统中装有300个电子真空管执行数字计算与逻辑运算,机器使用电容器来进行数值存储,数据输入采用打孔读卡的方法,还采用了二进位制。 ABC的设计中已经包含了现代计算机中4个最重要的基本概念,它是一台真正现代意义上的电子计算机,这是不容置疑的。1973年,经美国法院最终裁决,阿塔纳索夫最终被认为是世界上电子计算机的真正发明人。阿塔纳索夫-贝瑞计算机原机(见图1-25)及其复原机(见图1-26)至今还存列在爱荷华州立大学的展览馆里。
图1-25 阿塔纳索夫-贝瑞计算机原机
图1-26 阿塔纳索夫-贝瑞计算机复原机