购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

第5章

决策树

决策树(decision tree)是一种基本的分类与回归方法。本章主要讨论用于分类的决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的数据,利用决策树模型进行分类。决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。这些决策树学习的思想主要来源于由Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及由Breiman等人在1984年提出的CART算法。

本章首先介绍决策树的基本概念,然后通过ID3和C4.5介绍特征的选择、决策树的生成以及决策树的修剪,最后介绍CART算法。 FBCEyCjm1bc4D4m+apanF8pjiKYS5OM9lIwDJ6iZdQWMfozVet0OGZb5Srlq7ks6

点击中间区域
呼出菜单
上一章
目录
下一章
×