[1]Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967, 13(1):21–27.
[2]Hastie T, Tibshirani R, Friedman J. The elements of statistical learning:data mining, inference, and prediction, 2001.(中译本:统计学习基础——数据挖掘、推理与预测.范明,柴玉梅,昝红英等译.北京:电子工业出版社,2004.)
[3]Friedman J. Flexible metric nearest neighbor classification. Technical Report, 1994.
[4]Weinberger K Q, Blitzer J, Saul L K. Distance metric learning for large margin nearest neighbor classification. In: Proceedings of the NIPS. 2005.
[5]Samet H. The design and analysis of spatial data structures. Reading, MA:Addison-Wesley, 1990.
[1] kd 树是存储 k 维空间数据的树结构,这里的 k 与 k 近邻法的 k 意义不同,为了与习惯一致,本书仍用 kd 树的名称。
[2] x (1) =6是中位数,但 x (1) =6上没有数据点,故选 x (1) =7。