“数据是新时代的石油”。石油需要经过勘探、开采、提炼才能成为石化产品,服务人类,体现价值。数据同样需要经过治理和挖掘才能产生价值。在数据治理和挖掘的过程中,数据的应用面临很多困难和挑战。解决“数据孤岛”问题是其中最突出的难点。隐私保护是近年来从个人用户到政府都高度关注的内容。如何在保护个人隐私和数据安全的情况下,实现跨机构的数据联合使用,是当前大数据产业和人工智能技术应用的重要课题与探索方向。
2020年被认为是国内联邦学习和隐私保护计算的应用元年。无论是掌握最丰富数据资源的互联网“大厂”,掌握大量金融数据的银行和丰富通信数据的电信企业,还是传统的提供数据服务的第三方科技公司,都开始布局联邦学习,或提出应用架构框架,或结合业务建立行业解决方案。这既是数据共享和价值挖掘有着巨大的应用需求与价值的表现,也是面对严格的法律和监管要求,数据相关工作的一种必然的选择。
联邦学习作为一种隐私保护计算技术,为数据的联合建模和价值挖掘提供了可行的解决路径,正在实践中高速发展。在金融科技发展的过程中,对于数据的跨机构联合使用有强烈的应用需求。在服务中国光大集团打造世界一流金融控股集团的战略目标过程中,特别是在服务集团数字化转型和E-SBU协同战略的实践中,光大科技有限公司作为集团科技创新的实践者,聚焦数字化、智能化,从2019年年初就开始积极跟进联邦学习的最新发展,加入联邦学习FATE开源社区并提交代码为社区做贡献,积极参与行业技术标准的制定。光大科技有限公司在集团协同场景中探索,并在中国光大集团数据港上打造联邦学习平台,帮助集团内成员企业实现跨机构联合数据应用。
作为金融科技行业的参与者,我们把在联邦学习上的探索和实践经验分享给业界,希望为大数据和人工智能在金融行业的落地应用、数字经济发展和国有企业数字化转型贡献一份力量。这也是我们编写本书的初心和动机。我们尝试从联邦学习发展的背景、技术方法和工具的原理、落地实践的详细过程、与金融业务相关的应用案例、应用展望等方面,多角度、多层次地展示联邦学习及其在金融科技行业应用的全貌。
在编写本书的过程中,特别是在资料收集方面,我们得到了光大科技有限公司大数据部同事的大力帮助,在此特别向张明锐、凌立、周权、魏乐、额日和、卢格润、彭成霞、原田、毕光耀、樊昕晔、李钰、王义文、解巧巧等表示衷心的感谢。本书的编写和出版得到了电子工业出版社博文视点公司石悦老师,从选题策划到布局谋篇等方面的帮助。我们也对石悦老师表达感谢。此外,我们还要特别感谢香港科技大学的杨强教授和联邦学习FATE开源社区创始人陈天健,他们阅读了本书初稿并提出了很多宝贵的意见和建议,使我们对FATE框架的介绍更加准确与深入。
最后,我们还要感谢光大科技有限公司和中国光大集团,以及集团内的其他成员企业。它们鼎力支持,并提供了强大的技术平台和良好的协同环境,让我们能够最终完成本书的写作。