标准数独规则:填入1~9使得行、列、宫内数字不重复。
这道题是一道关于数组的题目,我们可以先完成基本功部分。之后可以观察到,九列的2、5、9不在九宫,也不在E9,故而只能在A9、B9和F9处。和行列数对的本质一样,只是两个格、两个数字变成了三个格、三个数字。这样的结构叫做行列数组。可以说,数组就是将二元的数对扩展成了三元的情况。在一般的数组习题中,大多数行列隐性数组都是由同一个宫内三个已知数对于某一行列进行删减,结合其余的排除而形成的,这里就是一个常见的结构。
在得到了259数组后,我们转而观察第二行。B9=29,由此与B5、B6构成数组269。与之前的显性数对同理,这里构成一个显性的数组,可以删减同一行其余格的2、6、9,得到星格的唯一余数B3=4。之后题目就解开了。数组本质上是数对的延展,将二元的数对延展为三元。虽然本质没有变,但是观察难度却大大提高,引申出的不同结构也是非常多。本题中有一个显性数组、一个隐性数组。更多的情况,读者可以在实际题目中进行思考与总结。