购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

2.1 牛顿运动定律

2.1.1 惯性定律 惯性参考系

既然力学的核心问题是力与运动的关系,那么这种关系是什么呢?人类对该问题的最初回答是亚里士多德的观点:力是物体运动的原因.这种观点应该说还是比较符合日常经验的,只有这样该观点才能维持近两千年.然而,该结论是针对复杂的实际情况提出来的,没能采用“抽象”的方法去看待事物的本质.抽象和理想实验方法的采用才是科学的开始.伽利略的理想实验开始导致完全不同的结论,最后被牛顿所总结.

牛顿第一定律 的内容是:任何物体都保持静止或匀速直线运动状态,除非有外力迫使它改变这种状态为止.

牛顿第一定律指出了任何物体都具有保持原有运动状态的特性,这一特性被称为物体的 惯性 ,因此牛顿第一定律又称为 惯性定律 .物体保持原有运动状态不变的运动称为惯性运动.惯性是物体的固有属性.

牛顿第一定律指出,运动状态的维持不需要力;而要想改变物体的运动状态,必须靠作用在物体上的力,或者说靠其他物体对这个物体产生的作用.也就是说,力不是物体运动的原因; 力是改变物体运动状态的原因 .这是对力学的核心问题——力与运动的关系——的首次回答,也是初步的和定性的回答.例如,运动员击打排球,手对排球有一个力的作用,这一作用改变了排球的运动状态,使排球由静止的变成运动的.

如果一个物体不受任何其他物体的作用,或者离其他物体的距离足够大,使得其他物体的作用可以忽略,这个物体就称为 孤立物体 .孤立物体是一个理想模型,严格地不受外力、保持静止或匀速直线运动状态的物体实际上并不存在,因为任何物体都或多或少地受到其他物体力的作用. 所有的理想模型都是实际情况的某种“可望而不可即”的极限状态 .但如果作用在物体上的力恰好可以互相抵消而平衡,物体的运动状态就可以保持不变.

一个孤立物体或受力平衡物体并不是在任何参考系中都能保持静止或匀速直线运动状态的.一个光滑无摩擦的小球静止在汽车上,而汽车静止在地面上.当汽车发动而加速向前运动时,汽车不能给小球以水平力的作用.现在,地面上的观测者看到小球仍然静止,这没有任何问题.但汽车中的观测者看到什么呢?小球向后加速运动!此例说明,惯性定律对加速运动的汽车并不成立,只能在某些特殊参考系成立.

问题的关键更在于: 对于一个自由的孤立物体 ,虽然在一些参考系中其加速度不为0,但 一定存在一个参考系,在这个参考系中,该物体的加速度为0,而且其他的孤立物体也保持静止或匀速直线运动状态 .这种特殊的参考系称为 惯性参考系 ,简称 惯性系 .而且, 相对于一个惯性系做匀速直线运动的平动参考系也是惯性系 .因此,确定了一个惯性系,就确定了一组惯性系.

在惯性系中,惯性定律以及整个牛顿力学体系得以成立,因此,惯性系在牛顿力学中具有重要的意义.惯性系的选择主要依据观察和实验.通常在地球表面讨论物体的动力学问题,地球可以认为是一个很好的惯性系.但由于地球的公转和自转效应,地球并不是严格的惯性系.地球的公转和自转加速度分别为5.9×10 -3 m/s 2 和3.4×10 -2 m/s 2 .在绝大多数实际问题中,这些加速度产生的效应可以忽略,地球可以被看成一个近似程度很好的惯性系.

在研究人造卫星的运动(如卫星发射、定轨)时,地球的自转就不能忽略了.此时较好的惯性系是 地心系 :由地心引出三根相互垂直的射线指向远处确定的恒星,就构成地心系.

在研究太阳系行星的运动时,可以选择太阳作为惯性系.虽然太阳也在绕银河系中心转动,但其加速度约为10 -10 m/s 2 .在研究太阳系内的天体运动时,这个加速度产生的效应完全可以忽略,太阳可以被看成一个非常精确的惯性系.

2.1.2 牛顿第二定律

牛顿第一定律指出任何物体都具有惯性.惯性大小的量度是 惯性质量 ,简称 质量 .质量大的,惯性大,反抗外力、保持原有运动状态(速度)的能力就强,相同的作用下速度的改变就会慢;质量小的,惯性小,在外力作用下就会比较容易地改变状态,相同的作用下速度的改变比较快.而在第1章我们知道,速度变化的快慢用加速度来表示.

牛顿第二定律的内容是:物体受到外力作用时,它所获得的加速度 a 的大小与合外力的大小成正比,与物体的质量成反比,加速度 a 的方向与合外力 F 的方向相同.写成数学形式为

力的单位在国际单位制(SI)中为N(牛顿).

牛顿第二定律是对力学的核心问题——力与运动的关系——的再次回答,而且是定量回答.它给出表征外界作用的力、表征惯性的质量和表征运动状态改变快慢的加速度三者之间的定量关系,是整个牛顿力学的基本定律.

由万有引力定律知道,任意两个物体之间存在万有引力.万有引力的大小与两个物体的质量成正比,这个质量称为引力质量.大量实验证明,惯性质量与引力质量相等.

2.1.3 牛顿第三定律

牛顿第三定律的内容是:物体间的作用力总是成对出现,称为 作用力和反作用力 .它们大小相等,方向相反,且作用在同一直线上.用数学公式表示 ,即

其中 r 21 r 2 - r 1 是质点2与质点1之间的相对位矢.

关于牛顿第三定律,需要做如下说明:①作用力和反作用力不是一对平衡力,它们分别作用在两个不同的物体上.②作用力和反作用力总是成对出现,它们在本性上必然同时出现,同时变化,同时消失.③作用力和反作用力属于相同性质的作用力.

牛顿第三定律使得从研究质点到研究质点系成为可能, 恰是作用力和反作用力把质点系中的各个质点联系起来.

2.1.4 几种常见的力

重力 是由地球对地表物体的吸引而产生的.在地球表面附近,任一物体所受的重力 G

G m g

式中 g 是重力加速度.重力的方向与重力加速度的方向相同,都是竖直向下的.

万有引力 是任意两物体之间都存在的力,取决于二者的质量.质量为 M 的质点施给质量为 m 的质点的万有引力为

其中 r 为由 M 指向 m 的矢径, r 方向的单位矢量.

物体发生形变后,产生一种要恢复原状的力,这个力即 弹力 .当弹性形变不太大时,弹簧产生的弹力为

式中 k 为弹簧的劲度系数, x 为弹簧端点的形变.这就是胡克定律.由上式可知,弹簧产生的弹力总是和弹簧的形变方向相反.

两个物体相互接触,在接触面上有相对运动或有相对运动趋势,就会在接触面之间产生一对阻止相对运动(或运动趋势)的力,称为 摩擦力 .它们分别作用在两个接触物体上,其方向总是与物体的相对运动方向或相对运动趋势的方向相反.

摩擦力分为 静摩擦力 滑动摩擦力 两种.两者都与两物体接触面之间的正压力 N 有关.静摩擦力是指两个物体接触面之间没有相对运动,只有相对运动的趋势而产生的摩擦力.它的大小由这种相对运动趋势的强弱决定,介于0和某个最大值之间.最大静摩擦力的大小为

f 0 μ 0 N

式中 μ 0 为静摩擦系数.滑动摩擦力是指两个物体接触面之间有相对运动而产生的摩擦力.它的大小为

f k μ k N

式中 μ k 为滑动摩擦系数.通常而言, μ 0 略大于 μ k ,但在一般计算中可以认为二者相等.

2.1.5 牛顿定律的应用

牛顿定律的应用,主要以牛顿第二定律为主,但也要考虑牛顿第一、第三定律的作用.运用牛顿定律解力学问题分为两类:一类为 已知物体的受力,求解物体的运动 ;另一类为 已知物体的运动,求物体的受力

具体计算时,先根据物体的受力情况,得到物体所受合力.由所受合力,列写出物体运动所满足的牛顿运动方程式(2.2).然后,根据实际情况,选定具体的坐标系,将牛顿运动方程在坐标系上投影,把矢量方程写成标量方程.最后,求解标量方程得到问题的解.

例2.1 质量为 m 的质点在恒力 F 0 的作用下一直沿 x 轴运动,若当 t =0时,质点具有初速 v 0 ,今将质点速度增到 v 0 n 倍时,需多长时间?

解: 质点只在恒力 F 0 的作用下运动,有牛顿运动方程 m F 0 ,即

两边同时对时间 t 积分,可得

代入初始条件,即当 t =0时 v 0 ,可得

c 1 v 0

所以

当速度 达到 nv 0 的瞬间,代入上式得

例2.2 如图2-1所示,细绳跨过一个定滑轮,绳的两端分别挂有物体 m 1 m 2 ,且 m 1 m 2 .设绳不可伸长,绳和滑轮的质量以及滑轮的阻力可略.试求两物体的加速度.

图2-1 例2.2图

解: m 1 m 2 分别作受力图.分别写出它们的牛顿运动方程为

T 1 - m 1 g m 1 a 1 m 2 g - T 2 m 2 a 2

由于绳不可伸长,绳和滑轮的质量以及滑轮的阻力可略,有

T 1 T 2 T a 1 a 2 a

联立求解牛顿运动方程,可得 8Zg5YrmrPaZd+DLa6bW3Vz7vkqF6s9y2YRfR6PRbLpN0Be28xxJadrnlw1PunGLp

点击中间区域
呼出菜单
上一章
目录
下一章
×

打开