语音识别技术是将声音转化成文字的一种技术,类似于人类的耳朵,拥有听懂他人说话的内容并将其转换成可以辨识的内容的能力。
不妨设想如下场景:
当你加完班回到家中,疲惫地躺在沙发上,随口一句“打开电视”,沙发前的电视按命令开启,然后一个温柔的声音问候你,“今天想看什么类型的电影?”或者主动向你推荐目前流行的一些影片。
这些都是语音识别所能够处理的场景,虽然看似科幻,但是实际上这些场景已经不再是以往人们的设想,正在悄悄地走进你我的生活。
2018年,谷歌在开发者大会上演示了一个预约理发店的聊天机器人,语气惟妙惟肖,表现相当令人惊艳。相信很多读者都接到过人工智能的推销电话,不去仔细分辨的话,根本不知道电话那头只是一个能够做出语音处理的聊天机器人程序。
“语音转换”“人机对话”“机器人客服”是语音识别应用广泛的三部分,也是商业价值较高的一些方向。此外,还有看图说话等一些带有娱乐性质的应用。这些统统是语音识别技术的应用。
语音识别通常称为自动语音识别(Automatic Speech Recognition,ASR),主要是将人类语音中的词汇内容转换为计算机可读的输入,一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。
语音识别是一项融合多学科知识的前沿技术,覆盖了数学与统计学、声学与语言学、计算机与人工智能等基础学科和前沿学科,是人机自然交互技术中的关键环节。但是,语音识别自诞生以来的半个多世纪,一直没有在实际应用过程得到普遍认可。一方面,语音识别技术存在缺陷,其识别精度和速度都达不到实际应用的要求;另一方面,业界对语音识别的期望过高,实际上语音识别与键盘、鼠标或触摸屏等应该是融合关系,而非替代关系。
深度学习技术自2015年兴起之后,已经取得了长足进步。语音识别的精度和速度取决于实际应用环境,但在安静环境、标准口音、常见词汇场景下的语音识别率已经超过95%,意味着具备了与人类相仿的语言识别能力,而这也是语音识别技术当前发展比较火热的原因。
随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,特别是远场语音识别已经随着智能音箱的兴起,成为全球消费电子领域应用最成功的技术之一。由于语音交互提供了更自然、更便利、更高效的沟通形式,因此语音必定成为未来主要的人机互动接口之一。
当然,当前技术还存在很多不足,如对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升;另外,多人语音识别和离线语音识别也是当前需要重点解决的问题。虽然语音识别还无法做到无限制领域、无限制人群的应用,但是至少从应用实践中我们看到了一些希望。当然,实际上自然语言处理并不限于上文所说的这些,随着人们对深度学习的了解,更多应用正在不停地开发出来,相信读者会亲眼见证这一切的发生。