购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

1.1 大数据时代的挑战

大数据的出现正在引发全球范围内技术与商业变革的深刻变化。在技术领域,以往更多依靠模型的方法,现在可以借用规模庞大的数据,用基于统计的方法,使语音识别、机器翻译这些技术领域在大数据时代取得新进展。

既有技术架构和路线已经无法高效处理如此海量的数据。对于相关组织来说,如果投入巨大而采集的信息无法通过及时处理与反馈,就会得不偿失。可以说,大数据时代对人类的数据驾驭能力提出了新挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。

大数据时代主要有4个挑战:

第一个挑战是数据量大。

大数据的起始计量单位是PB(1000TB)、EB(100万TB)或ZB(10亿TB)。目前,企业面临数据量的大规模增长,预测未来十年全球数据量将扩大50倍。如今,大数据的规模尚在不断变化,单一数据集的规模范围从几十TB到数PB不等。

第二个挑战是数据类型繁多。

包括网络日志、音频、视频、图片、地理位置信息等,多种类型的数据对数据处理能力提出了更高要求。数据多样性的增加主要由新型多结构数据和多种数据类型(包括网络日志、社交媒体、互联网搜索、手机通话记录及传感器网络等)造成。其中,部分传感器安装在火车、汽车和飞机上,每个传感器都增加了数据的多样性。

第三个挑战是数据价值密度低。

大数据非常复杂,有结构化的,也有非结构化的,增长速度飞快,单条数据的价值密度极低。此外,随着物联网的广泛应用,信息感知无处不在。信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

第四个挑战是高速性。

描述的是数据被创建和移动的速度。在高速网络时代,通过实现软件性能优化的高速电脑处理器和服务器,创建实时数据流已成为流行趋势。企业不仅需要了解如何快速创建数据,还必须知道如何将数据快速处理、分析并返回给用户,以满足用户的实时需求。 s+rAZuiW5DvuTVN3lxAK1UYbNtc/6j5BoWRryFsXRXbRaUTbbVxJFhB/SQ84VBoh

点击中间区域
呼出菜单
上一章
目录
下一章
×