|
参考文献 |
[1] 周东华,李刚,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011.
[2] Z.Pawlak.Rough Sets[J].International Journal of Information and Computer Science,1982,11(5):341-356.
[3] 张利,卢秀颖,吴华玉,郝胜智.基于粗糙集的启发式值约简的改进算法[J] 仪器仪表学报,2009,30(1):82-85.
[4] 陈果.基于遗传算法的决策表连续属性离散化方法[J].仪器仪表学报,2007,28(9):1700-1705.
[5] 颜艳,杨慧中.基于容差关系的粗糙集理论及其应用研究[J].仪器仪表学报,2008,29(7):1522-1525.
[6] 王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246.
[7] J.Richard,Q.Shen.Semantics-Preserving Dimensionality Reduction[J].Rough and Fuzzy-Rough-Based Approaches.IEEE Trans.On knowledge and data engineering,2004,16(12).
[8] 丁卫平,王建东,管致锦.基于量子蛙跳协调进化的粗糙属性快速约简[J].电子学报,2011,11(39):2597-2603.
[9] 孙娓娓,王春生,姚云飞.基于自适应遗传算法的粗糙集属性约简算法[J].计算机工程与应用,2011,33(47):49-51.
[10] 魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001-27(6):806-813.
[11] 张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
[12] 黄江华.人工神经网络在数据挖掘中的应用[D].湖南:湖南师范大学,2006.
[13] 温洲,邵晓巍,垄德仁.基于BP神经网络的人脸识别后续分类算法[J].计算机应用,2011,A02(31):133-136.
[14] 阎平凡,张长水.人工神经网络拟进化计算[M].北京:清华大学出版社,2006,105-106,549-599.
[15] 杨静,毛宗源.基于 PCA 和神经网络的识别方法研究[J].计算机工程与应用,2007,43(25):246-248.
[16] 谢志勇.基于DSP和BP神经网络的旋转机械在线健康状态诊断系统[J].仪表技术与传感器,2011,3:64-66.
[17] 张清河,邓小炼.BCGs-FFT结合BP神经网络反演金属介质符合主题目标参数[J].电子学报,2010,5(38):1217-1220.
[18] 王立威.人工神经网络隐层神经元数的确定[M].重庆:重庆大学出版社,2012.
[19] I A Basheer,M Hajmeer.Artificial neural networks:fundamentals,computing,design and application[J].Journal of Microbiological Methods,2000,43(2000):3-31.
[20] Sietsma J,Dow R J F.Creating artificial neural networks that generalize[J].Neural Networks,1991,4(1):67-69.
[21] Murata J.A structure designing method for feedforward and recurrent neural networks based on a net significance measure[M].Proc.of 4th IEE Int.Conf.on ANN,1995,358-363.
[22] X.W.Jian,D.Yang.UPNT:Uniform Projection and Neighbourhood Thresholding method for motif discorvery[J].International Journal of Bioinformatics Research and Applications,2008,4(1):96-106.
[23] D.Matthieu,V.H.Jacques.Info-gibbs:a motif discovery algorithm that directly optimizes information content during sampling[J].Journal of Bioinformatics,2009,25(20):2715-2722.
[24] 邓卫强,王跃钢,杨颖涛.基于灰色关联度准则的TVARMA模型参数估计方法[J].计算机应用研究,2010,11:4101-4104.
[25] 刘双印,徐龙琴.基于改进覆盖算法和灰色关联度的案例检索[J].计算机工程,2011,13(37):169-171.
[26] 王丽.基于模糊粗糙集的两种属性约简算法[J].计算机应用,2006,26(3):635-637.
[27] 周伟,桂林,周林,张家祥等.MATLAB小波分析高级技术[M].西安:西安电子工业出版社,2006.
[28] 侯海云.大型回转机械健康状态诊断的现状和发展趋势[J].建设机械技术与管理,2006,4:98-101.
[29] 朱春梅,徐小力,张建民.基于混沌分形的旋转机械健康状态诊断方法研究[J].煤矿机械,2006,6:1101-1102.
[30] 杨国安,王泽栋.基于改进希尔伯特-黄的泵阀健康状态诊断新方法[J].北京化工大学学报.2008,4:98-101.
[31] 毛炜,金荣洪,耿军平等.一种基于改进Hilbert—Huang变换的非平稳信号时频分析法及其应用.上海交通大学学报.2006,40(5):78-81.
[32] 侯敬宏,黄树红,申俊等.基于小波分析的旋转机械振动信号定量特征研究[J].机械工程学报,2004,40(1):92-95.
[33] 屈梁生,刘雄,陈岳东.全息谱原理和应用.设备管理与维修,第8期,1991.
[34] 顾家柳.旋转机械健康状态诊断技术展望.第二届全国机械设备健康状态诊断学术会议论文集.北戴河,1988,PP 45-51.
[35] 白木万博等(日).旋转机械振动的安全监测装置,风机技术,第三期,1984,PP 56-63.
[36] 黄文虎等.利用微计算机的机组振动监测和健康状态诊断系统 MMMD-1 概要.Proc of CSMT 86 中国沈阳,1988,6.
[37] Li Zhang,jiaqiang Zhao.Study of a New Improved PSO-BP Neural Network Algotithm[J].Journal of Harbin Institute of Technology(New Series),2013,20(5):99-105.
[38] Xu Li,A'nan Zheng,Xunan Zhang,Chenchen Li,Li Zhang.Rolling element bearing fault detection using support vector machine with improved ant colony optimization[J].Measurement,2013,46(5):2726-2734.
[39] Zhang Li,Tian Li,Ji Han Feng,Chen Dan.Bearing health degree evaluation based on probabilistic neural network[J].International Journal of Advancements in Computing Technology,2013,5(9):584-596.
[40] Li Zhang,Xuezhi Wang,Yanze Liu.Rolling element bearing fault detection based on Pulse wavelet energy spectrum analysis[J].Journal of Information and Computational Science,2013,10(11):3549-3559.
[41] Zhaohong Bing,Li Zhang,Liyong Zhang,Beilei Wang.The particle swarm and fuzzy c-means hybrid method for incomplete data clustering[J].ICIC Express Letters,2013,7(8):2437-2441.