早期的控制系统都是继电器控制系统,但是到了20世纪60年代和70年代,继电器控制的缺点就暴露出来了。当然它是有很多优点的,简单易懂、操作方便、价格便宜(例如,一些常开常闭触点、线圈,就这些简单的符号就能表达一个系统,让别人一看简单易懂。在操作方面都是些按钮,操作简便,继电器价格也便宜)。到现在为止并不是说继电器已经完全抛弃了或者不用了,但是主要是用在一些小的系统上。
如果是在一些比较大的系统,对于继电器控制来说,就存在明显的缺点,如接线比较复杂(见图1-1)、生产工艺变化的适应性较差等,特别是它是靠硬连线逻辑构成的系统(硬连线就是一般的导线)。对于这些情况大家会想到如果能用程序来修改不就更好了吗?这就是后来的PLC。
在20世纪60年代到70年代,计算机系统也得到了发展,它优点就是功能完备、灵活性、通用性好。特别是计算机的计算能力特别强。在这个时候,有人就会想到把继电器系统和计算机系统二合一,计算机系统编程容易、计算速度快,就内置在继电器系统上,而继电器系统操作方便就负责外围的设备。提出这种设想的是1968年美国的通用汽车公司,当时主要是为它生产汽车而考虑的,但是他们对计算机不是很了解。到了1969年,美国数字设备公司研制出了世界上第一台PLC,型号称为PDP-14。图1-2是德国西门子公司的S7-200。
图1-1 继电器控制系统
图1-2 S7-200
(1)模式选择器。用于手动选择操作模式:
STOP=停机模式;不执行程序
TERM=运行程序;可以通过编程器进行读/写访问
RUN=运行程序;通过编程器仅能进行读操作
状态指示器 SF=系统错误;CPU内部错误
(LED)RUN=运行模式;绿灯
STOP=停机模式;黄灯
DP=分布式I/O(仅对CPU 215)
(2)存储器卡。存储器卡的插槽。存储器卡用来在没有供电的情况下不需要电池就可以保存用户程序。
(3)PPI连接。编程设备、文本显示器或其他的CPU通过这里连接。
图1-3和图1-4所示是德国西门子公司的S7-300及S7-400 PLC。
图1-3 S7-300
图1-4 S7-400
到目前为止,PLC的发展经历了五个阶段:
第一阶段:从第一台PLC到20世纪70年初期,CPU是采用中小规模集成电路,存储器为磁芯存储器(抗电磁干扰能力差)。
第二阶段:20世纪70年代初期到70年代末期。CPU是采用微处理器,存储器是EPROM。
第三阶段:20世纪70年代末期到80年代中期。CPU采用8位和16位微处理器,有些还采用多微处理器。存储器采用EPROM、EAROM、CMOS RAM。
第四阶段:20世纪80年代中期到90年代中期。PLC全面采用8位、16位的微处理芯片的位片式芯片,处理速度达到1ns/步。
第五阶段:20世纪90年代中期到现在。PLC采用16位和32位微处理芯片,有的已经使用RISC芯片。
PLC的发展与PC的发展相比较是落后一点,主要原因不是CPU装不上去,而是PLC的发展一定要和外围设备的发展相配套。
PLC会向哪个方向发展呢?
同计算机的发展类似,目前,可编程序控制器正朝着两个方向发展。
一是朝着小型、简易、价格低廉的方向发展。如OMRON公司的CQM1、SIEMENS公司的S7-200一类可编程序控制器,2009年又推出了S7-1200,SIEMENS公司将会把最新的通信和控制技术应用在S7-1200这款产品上,同样,SIEMENS也将会用S7-1200这款产品强力打造全球PLC中低端市场。这种可编程序控制器可以广泛地取代继电器控制系统,用于单机控制和规模比较小的自动化生产线控制。
二是朝着大型、高速、多功能和多层分布式全自动网络化方向发展。这类可编程序控制器一般为多处理器系统,有较大的存储能力和功能很强的输入/输出接口。系统不仅具有逻辑运算、计时、计数等功能,还具备数值运算、模拟调节、实时监控、记录显示、计算机接口、数据传送等功能,还能进行中断控制、智能控制、过程控制、远程控制等。通过网络可以与上位机通信,配备数据采集系统、数据分析系统、彩色图像系统的操纵台,可以实现自动化工厂的全面要求。它会向高速度、大容量方向发展。目前很多已经使用64bitRISC芯片,多CPU并行、分时、分任务处理,这样速度可以达到ns级。
大中型CPU的扫描速度在0.2ms/K步。
目前PLC最大容量是几百千字节(KB),最大是几兆字节(MB)。