购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

1.3.1 统计模式识别研究的主要问题

统计模式识别研究的主要问题有:特征的选择与优化、分类判别及聚类判别。

(1)特征的选择与优化

如何确定合适的特征空间是设计模式识别系统一个十分重要的问题,对特征空间进行优化有两种基本方法,一是特征选择,如果所选用的特征空间能使同类物体分布具有紧致性,可为分类器设计成功提供良好的基础;反之,如果不同类别的样品在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。另一种是特征的组合优化,通过一种映射变换改造原特征空间,构造一个新的精简的特征空间。

(2)分类判别

已知若干个样品的类别及特征,例如,手写阿拉伯数字的判别是具有10类的分类问题,机器首先要知道每个手写数字的形状特征,对同一个数字,不同的人有不同的写法,甚至同一个人对同一个数字也有多种写法,就必须让机器知道它属于哪一类。因此对分类问题需要建立样品库。根据这些样品库建立判别分类函数,这一过程是由机器来实现的,称为学习过程,然后对一个未知的新对象分析它的特征,决定它属于哪一类。这是一种监督分类的方法。

(3)聚类判别

已知若干对象和它们的特征,但不知道每个对象属于哪一个类,而且事先并不知道究竟分成多少类,用某种相似性度量的方法,即“人以类聚,物以群分”,把特征相同的归为一类。例如,手写了若干个阿拉伯数字,把相同的数字归为一类。这是一种非监督学习的方法。

机器识别也往往借鉴人的思维活动,像人类一样找出待识别物的外形或颜色等特征,进行分析、判断,然后加以分门别类,即识别它们。模式识别的方法很多,很难将其全部概括,也很难说那种方法最佳,常常需要根据实际的情况运用多种方法进行实验,然后选择最佳的分类方法。 xg4kwqBpKqRafmk6TNwKjAD9DDoDV+V7Dp96Je5SeE9RiGahphHbvVQwBNAlC3J2

点击中间区域
呼出菜单
上一章
目录
下一章
×