购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

2.10.3 数据挖掘常用技术

常用的数据挖掘技术包括关联分析、序列分析、分类、预测、聚类分析及时间序列分析等。

1.关联分析

关联分析主要用于发现不同事件之间的关联性,即一个事件发生的同时,另一个事件也经常发生。关联分析的重点在于快速发现那些有实用价值的关联发生的事件。其主要依据是事件发生的概率和条件概率应该符合一定的统计意义。

对于结构化的数据,以客户的购买习惯数据为例,利用关联分析,可以发现客户的关联购买需要。例如,一个开设储蓄账户的客户很可能同时进行债券交易和股票交易,购买纸尿裤的男顾客经常同时购买啤酒等。利用这种知识可以采取积极的营销策略,扩展客户购买的产品范围,吸引更多的客户。通过调整商品的布局便于顾客买到经常同时购买的商品,或者通过降低一种商品的价格来促进另一种商品的销售等。

对于非结构化的数据,以空间数据为例,利用关联分析,可以发现地理位置的关联性。例如,85%的靠近高速公路的大城镇与水相邻,或者发现通常与高尔夫球场相邻的对象等。

2.序列分析

序列分析技术主要用于发现一定时间间隔内接连发生的事件。这些事件构成一个序列,发现的序列应该具有普遍意义,其依据除了统计上的概率之外,还要加上时间的约束。

3.分类分析

分类分析通过分析具有类别的样本的特点,得到决定样本属于各种类别的规则或方法。利用这些规则和方法对未知类别的样本分类时应该具有一定的准确度。其主要方法有基于统计学的贝叶斯方法、神经网络方法、决策树方法及支持向量机(support vector machines)等。

利用分类技术,可以根据顾客的消费水平和基本特征对顾客进行分类,找出对商家有较大利益贡献的重要客户的特征,通过对其进行个性化服务,提高他们的忠诚度。

利用分类技术,可以将大量的半结构化的文本数据,如WEB页面、电子邮件等进行分类。可以将图片进行分类,例如,根据已有图片的特点和类别,可以判定一幅图片属于何种类型的规则。对于空间数据,也可以进行分类分析,例如,可以根据房屋的地理位置决定房屋的档次。

4.聚类分析

聚类分析是根据物以类聚的原理,将本身没有类别的样本聚集成不同的组,并且对每一个这样的组进行描述的过程。其主要依据是聚到同一个组中的样本应该彼此相似,而属于不同组的样本应该足够不相似。

仍以客户关系管理为例,利用聚类技术,根据客户的个人特征及消费数据,可以将客户群体进行细分。例如,可以得到这样的一个消费群体:女性占91%,全部无子女、年龄在31岁到40岁占70%,高消费级别的占64%,买过针织品的占91%,买过厨房用品的占89%,买过园艺用品的占79%。针对不同的客户群,可以实施不同的营销和服务方式,从而提高客户的满意度。

对于空间数据,根据地理位置及障碍物的存在情况可以自动进行区域划分。例如,根据分布在不同地理位置的ATM机的情况将居民进行区域划分,根据这一信息,可以有效地进行ATM机的设置规划,避免浪费,同时也避免失掉每一个商机。

对于文本数据,利用聚类技术可以根据文档的内容自动划分类别,从而便于文本的检索。

5.预测

预测与分类类似,但预测是根据样本的已知特征估算某个连续类型的变量的取值的过程,而分类则只是用于判别样本所属的离散类别而已。预测常用的技术是回归分析。

6.时间序列分析

时间序列分析的是随时间而变化的事件序列,目的是预测未来发展趋势,或者寻找相似发展模式或者是发现周期性发展规律。 sUrfkm/aixdX7xZuhDesFka1YMhvag5hHb/8ZiWv4lWb9i0MbXbwdrxOkBf2lV62

点击中间区域
呼出菜单
上一章
目录
下一章
×

打开