2.2 传感器的数学模型 |
|
从系统角度看,一种传感器就是一种系统。而一个系统总可以用一个数学方程式或函数来描述。即用某种方程式或函数表征传感器的输出和输入的关系和特性,从而用这种关系指导对传感器的设计、制造、校正和使用。通常从传感器的静态输入—输出关系和动态输入—输出关系两方面建立数学模型。
静态模型是指在输入信号不随时间变化的情况下,描述传感器的输出量与输入量的一种函数关系。如果不考虑蠕动效应和迟滞特性,传感器的输入量x与输出量y之间的关系通常可用如下的多项式表示:
(2-1)
式中,a 0 ——输入量x为零时的输出量;
a 1 ,a 2 ,…,a n ——非线性项系数。各项系数决定了特性曲线的具体形式。
传感器的动态模型是指输入量随时间变化时传感器的响应特性,它描述了输出和输入信号的一种数学关系。由于传感器的惯性和滞后,当被测量随时间变化时,传感器的输出往往来不及达到平衡状态,处于动态过渡过程之中,所以传感器的输出量也是时间的函数。动态模型通常采用微分方程和传递函数描述。
大多数传感器都属于模拟系统之列。描述模拟系统的一般方法是采用微分方程。在实际的模型建立过程中,一般采用线性常系数微分方程来描述输出量y和输入量x的关系。其通式如下:
式中,a n , a n-1 ,…, a 0 和b m , b m-1 , …, b 0 为传感器的结构参数。除 外,一般取b 1 ,b 2 ,…,b m 为零。
(2-2)
如果 y ( t )在 t ≤0时, y ( t ) =0,则 y ( t )的拉氏变换可定义为:
(2-3)
式中, , 。对微分方程两边取拉氏变换,则得:
(2-4)
定义输出 y ( t )的拉氏变换 Y ( s )和输入 x ( t )的拉氏变换 X ( s )的比为该系统的传递函数 H ( s ),
(2-5)
对 y ( t )进行拉氏变换的初始条件是 t ≤0时, y ( t )=0。对于传感器被激励之前,所有的储能件如质量块、弹性元件、电气元件等均符合上述的初始条件。
显然 H ( s )与输入量 x ( t )无关,只与系统结构参数有关,因而 H ( s )可以简单而恰当地描述传感器输出与输入的关系。