购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

7 完整的FOF怎么做

业内目前做FOF的机构最常犯的一个错误就是一开始就进行各种尽职调查,很多人的做法是将各大排行榜上的数据从高到低排序,然后一个个去考察。当然,这种做法是符合人性的,但很容易陷入各种尽职调查陷阱,有关这方面的话题将在第11章中详细解释。

一个完整的FOF产品的投资流程应该是“自上而下”的设计,而不能摸着石头过河。总的来说,可以将其分为5个步骤:产品设计、资产配置、策略组合、管理人选择、投后管理,如图7.1所示。

图7.1 FOF运作流程

7.1 产品设计

产品设计的实质是产品定位问题,主要取决于客户的需求、预期收益、能承受的风险水平、投资期限等。

产品设计首先要搞清楚的一个问题就是:你的产品到底卖给谁?是卖给风险厌恶型客户,还是风险偏好型客户?目前很多FOF投资往往忽略这一环节,产品设计定位不明确,则相应的资产配置管理就经常错位。

举个例子:张艺谋导演的大片《金陵十三钗》投资额巨大,国际巨星云集,但是票房惨淡;而小成本电影《小时代》无论是制作水平还是艺术价值都难说完美,但是票房却非常靓丽,其关键原因就在于客户定位分析的准确性。《小时代》的客户定位很清晰,就是给三、四线城市的高中女生做梦用的,其主角的帅气和漂亮、场景的绚丽、情节的浮夸,无一不是为了达到这个目的。所以,客户定位是任何商业模式一开始就要考虑清楚的。

第二个问题就是:FOF到底是作为目标还是作为手段?如果是作为目标,就是全程控制组合的构建;如果是作为手段,就可以作为增强配置。

对于风险厌恶型客户,如银行、保险、央企等大型机构投资者,FOF可以作为固定收益的一个增强品种。曾经有一个债券投资很出色的机构和笔者交流,说他们也想做FOF,但是很苦恼,不知道从何下手,因为他们对权益类和对冲基金类不是很熟悉,如果自建团队做孵化,那么成功率也不知道有多高。笔者当时给出的建议是做一个债权增强品种,将大部分资金依然配置在传统优势的债券上,拿出一部分资金以FOF的方式构建权益类和对冲基金类的组合,这样可以比传统的纯债券有更好的收益增强表现。

对于风险偏好型客户,如券商、信托公司、期货公司的客户,FOF出色的风险管理能力又可以让产品熨平波动。例如,券商可以发行一个产品,将大部分资金配置在FOF上,拿出少量资金做纯股票型的投资,这样可以比传统的权益类产品有更好的稳定性,从而有助于维护客户的稳定。

对于FOF机构来说,客户特征决定了构建的FOF类型,这是必须在一开始就明确的事情。因为客户特征决定了后面的资产配置、策略组合、管理人选择和投后管理等内容。

7.2 资产配置

资产配置主要分为战略资产配置和战术资产配置两个层次,而且必须自上而下,做好顶层设计。

战略资产配置考虑的是在不同的市场环境下该如何配置大类资产。具体到基金投资者上来说,比如,如何配置股票类、债券类、对冲类、货币市场类基金产品的比例,或者如何配置浮动收益类产品和固定收益类产品的比例,以及大类资产配置中的细类资产投资比例。

战术资产配置就是具体到每个类别下面挑选合适的品种,比如,在股票资产中,到底是选择低风险的蓝筹股,还是选择高收益的成长股。

FOF资产配置如图7.2所示。

图7.2 FOF资产配置

目前,多数FOF基金经理花在“投什么”上的精力要远大于花在“如何投”上的精力,但是后者往往比前者更重要。资产配置就是用来解决“如何投”的问题的。那么,为什么说“如何投”或者各大类资产配置比例的设置及调整更重要呢?

2005—2013年,在中国基金市场上运行期满的基金中,最好的货币市场基金业绩是最差的货币市场基金业绩的1.26倍,最好的债券基金业绩是最差的债券基金业绩的5.26倍,最好的股票基金业绩是最差的股票基金业绩的5.08倍。但与此同时,股票基金的平均业绩是货币市场基金平均业绩的9.78倍,是债券基金平均业绩的2.95倍,而最好的股票基金业绩是最好的货币市场基金业绩的41.91倍。显然,配置哪类资产比具体配置哪个品种重要得多。

在FOF里,大类资产配置的概念主要指对应于一个大资产类别的基金类别。比如,对应于股票市场的股票基金,对应于债券市场的债券基金,对应于商品市场的期货基金,对应于房地产市场的REITs(不动产基金)等。

而类别资产是介于大类资产(如房子、股票、债券、银行存款)与具体品种之间的一个资产分类。比如,房地产中的住宅、商铺,股票里的蓝筹股、成长股,债券里的企业债、政府债等。当然,在FOF里,类别资产主要指的是某大类基金下的细类基金,即按照风格划分的细类基金,如股票基金下的大盘蓝筹基金、小盘成长基金等。

在类别资产里有一个有趣的现象:如果按照某些分类方式,则同类的基金长期业绩会趋同,而不同类的基金长期业绩会分化,称为基金的业绩收敛与分层现象。简而言之,如果选对了细类基金,那么这个细类基金下的大部分品种业绩都差不多,而细类基金之间的业绩差距则会拉大。比如,如果选择了大盘蓝筹股票基金,那么在十几个月之后,这个类别里的大部分基金收益差距会逐渐收窄,但是大盘蓝筹基金和小盘成长基金之间的收益差距则会拉大。

资产配置的关键是采用风险平价的方法,也就是说,低风险的资产要增加配置,高风险的资产要降低配置,并且根据风险平价的方式来进行不同资产、不同策略之间的资金分配。有关风险平价的理念将在第27章中详细阐述。

7.3 策略组合

策略组合的目的是在资产类别的比例确定了以后,进行具体的交易策略层面的组合。这一阶段需要考虑的是策略的相关性和风险因子的暴露问题。

而在策略分类中,有一个“不可能三角”,也就是策略的收益率、风险、资金容量三者是不可兼得的,任何策略都只能满足其中两项最优,因此,在进行策略组合的时候需要综合考察。有关这个“不可能三角”的问题,参见附录1。

到了策略层面,关键的问题是尽可能降低策略之间的相关性,因为相关性过强的策略之间会同涨同跌,从而带来相关性风险。那么,如何进行相关性的分析呢?首要的是定义策略之间的相关系数,这样就可以确定不同策略之间的关联性。这里定义策略的相关系数如下:

令策略 x 的预期收益率为 x i i =1,2,…, n ),策略 y 的预期收益率为 y i i =1,2,…, n ),则 x i y i 的相关系数即策略 x y 的相关系数。

ρ xy =1时,表示策略 x y 完全正相关。

ρ xy =-1时,表示策略 x y 完全负相关。

ρ xy =0时,表示策略 x y 完全不相关。

在实际交易中,我们希望策略之间最好不相关,也就是尽量进行 ρ xy =0的策略之间的组合。

在做好策略的相关性分析以后,就需要根据相关性进行不同策略之间的匹配。这时候需要对策略的基本逻辑进行分析,比如阿尔法类策略、择时类策略、套利类策略、期权类策略。对于不同的策略,要分析具体适用的市场行情和风格。例如,如果认为股市可能有一波牛市,则需要对择时类策略加大配置;如果认为市场未来不被看好,则增加阿尔法类策略的配置。

7.4 管理人选择

不管是FOF还是MOM,最终都要体现到标的基金的管理人选择上来,就像不管你买的是奔驰还是宝马,你得请一位好司机,除非你自己开。业内通行的做法是标的基金的优选以定量为基础,结合定性的研究。在考察维度上,需要结合标的基金本身的收益风险特征、基金经理的管理能力及标的基金所在基金公司的整体实力三个维度的内容综合考虑。

完整的基金评价体系涉及业绩衡量、业绩评价与业绩归因三个方面:业绩衡量回答业绩“是”什么的问题;业绩评价回答业绩“好坏”的问题;业绩归因回答业绩“好坏”的原因。

筛选标的基金的量化方法可以依照量化指标,如阿尔法值、贝塔值、詹森值等绩效指标,加上基金公司及经理人等因素作为计算参数,用严格的统计方法设计出一整套量化方案。量化分析一般要先考察基金短、中、长期绩效,从月、季、一年、两年乃至更长时期内绩效表现较好的基金中初步筛选出符合条件的标的基金池,然后结合风险特征,选出收益较高、风险较低的基金。总体而言,量化选择方法主要依据基金的历史业绩,同时也要考虑基金的风险特征等。

在量化筛选之后,还需要对初步选定的标的基金进行定性分析。事实上,决定基金业绩的主要因素是基金经理的管理能力,因此,定性分析主要针对基金经理展开。负责建立基金池的投资决策小组及FOF基金经理人通过拜访标的基金经理人,来了解他们管理基金的哲学、选股和投资策略、团队风险控制、基金经理操作经验、绩效稳定性等。

由于基金公司的整体实力会对单只基金的业绩产生影响,因此,除对标的基金进行优选外,还涉及对标的基金公司的考察。业内通行的做法是考察公司商誉和管理能力、资产管理规模、旗下基金过去绩效表现、旗下基金周转率、旗下基金费率等指标,在其他条件相同的情况下,会优先考虑标的基金公司实力雄厚的基金。

对于这个问题,笔者认为,业内的评价体系过于重视对单个产品的评价,而忽略了对公司整体的评价,特别是对于私募基金而言,对公司整体的评价起着至关重要的作用。为此,笔者结合多年的实战经验,提出了“星潮评价体系”,从公司的股权结构、投资经理的教育背景、投资经理的从业经历等多方面进行公司层面的评级(具体参见第18章)。

7.5 投后管理

作为组合产品,与单只基金相比,在市场上涨时,FOF难以体现出优势;但是在控制下跌的风险上,FOF 有可能做得更好,从而获得较高的收益风险比。普通股票基金在长期投资回报上是令人满意的,但是波动性和向下的跌幅非常大。从2005年7月到2015年6月,公募基金中股票基金的年化收益率达到20.94%,但是年化波动率也高达48.58%,年度最大跌幅高达51.42%。由于股票基金本身的产品特性,所以其很难规避系统风险。

此外,过去FOF基金没有在总体上得到认可,主要是因为没有控制好下行风险。在面临系统风险的时候,下跌的幅度很大,没有发挥出FOF控制风险的优势。未来FOF管理人的目标就是控制好产品的下行风险。如果FOF产品能够取得与一般股票基金相当的业绩,但把业绩波动和下跌幅度控制为普通股票基金的一半,那么这样的产品无疑会具有较强的吸引力。所以,投后管理最关键的是风险控制(以下简称“风控”)与绩效归因。对于风控来说,主要有事前风控、事中风控和事后风控三个环节。

事前风控就是确定不同策略之间的风险特征,以及如何利用“风险平价”的方法来降低整个组合的风险(有关“风险平价”的内容参见第27章)。

事中风控就是对产品的各种风险指标进行监控,包括“净敞口”“总持仓比例”“单品种持仓比例”“黑名单”4个方面,并且可以实时监控管理人是否有违背基金合同约定、超越风险指标的交易行为。

事后风控就是对盘后的持仓组合计算最大风险损失值,也就是通常所说的VaR,计算在不同置信区间下的最大可能损失值,从而为FOF的配置调整提供数据上的依据。

有关事中风控和事后风控的内容参见第9章。

绩效评估就是对实际的业绩进行分析,分解其中的运气成分和实际的管理能力成分。

当某个基金产品的业绩产生以后,需要深入研究的是该业绩产生的原因,到底有多少是运气成分,有多少是基金经理的管理能力,这就是业绩归因所要完成的工作。运气和能力就好像速溶咖啡和咖啡伴侣一样,常伴每个投资者左右,而且在加满水之后,你还不大容易分清到底哪个是哪个。

Brinson和Falcher对这个问题提出了一个很好的解决思路。假设我们对自己的投资业绩的判断标准是沪深300指数,那么从我们自己的资产组合的配置上来看,组合的收益率会受到三种效应的影响。

第一种是资产的配置效应。假如沪深300指数有28个行业,那么我们选择的对28个行业的投资比例(也就是权重)很显然会影响组合的收益率。第二种是个股的选择效应。对于沪深300指数中的300只股票,我们会选择其中的一些股票进行投资,这部分就是我们通过选择个股获得的收益。第三种是两种效应的交互效应,即我们同时进行行业配置和行业下的个股选择而获得的收益。这样说似乎很抽象,我们来画一张简单的表。为了叙述简便,假如有一个只有3个行业的沪深300指数,我们将其作为自己的业绩基础,如表7.1所示。

表7.1 配置效应案例

很显然,该组合从行业配置到个股选择,都和沪深300指数的设计不一致,而且很显然(或者说很幸运)获得了更高的收益率,那么这样的收益率实现究竟是源于基金经理对行业权重的调配,还是源于对行业内部股票的选择呢?这个问题一方面可以归结为基金经理投资收益的来源,另一方面也可以让我们思考该基金经理究竟在股票投资的哪一方面更有优势。所以我们建立另一张表格,如表7.2所示。

表7.2 配置效应组合收益率分析

在表7.2中,式(1)和式(4)就是表7.1中的结果,而式(2)和式(3)看上去就特别奇怪,好像没有什么特别的含义。但是如果我们运用简单的减法,就会发生一些有趣的事情,如表7.3所示。

表7.3 绩效归因分析

用式(2)减去式(4),实际上就是假如我们和沪深300指数一样买入300只股票,但是在300只股票所属的3个行业中投入的资金比例不同,这样式(2)和式(4)的差异就反映了我们在行业配置上的能力,即资产配置效应。而类似地,用式(3)减去式(4),就是我们在和沪深300指数进行一致的行业配置的时候,因为对股票选择的不同,所以获得的收益率也不同,也就是个股选择效应。而用式(1)减去式(2)和式(3)再加上式(4),就是资产配置和个股选择同时作用的交互效应。

通过这样一个简单的计算,我们就可以像剥洋葱一样,层层深入,大致把投资收益的来源分解成不同的类型。根据表7.1中的数据,我们自己的投资组合的收益率比沪深300指数的收益率要高出3.5%,而用刚刚介绍的分析方法可以计算得到,其中资产配置效应给我们自己的投资组合所带来的收益率提升是0.2%,而个股选择效应所带来的收益率提升是2.8%。那么剩下的还没有被这两个效应解释的0.5%的收益率就是这两个效应交互作用的结果,也就是说,你可能在业绩好的行业里配置了更多的资金并买到了表现更好的股票,而在业绩差的行业里配置了更少的资金并同样买到了表现更好的股票。 5IirTX49AyyZUoLWYW9euaDGVt6Sbd6CVq99tkcbzvAdGQ6NVaD0nK9lH3iwhKpP



8 有几种FOF模式

FOF的核心其实是资产配置和策略组合。从产品募集方式来看,主要有公开募集和非公开募集两种,对应的就是公募FOF和私募FOF。公募FOF的投向只能是公募基金,私募FOF则不受投资范围的限制,因此私募FOF的收益率和灵活性相比公募FOF会有一定的优势。

对于公募FOF来说,主要有目标日期、目标风险和风险平价三种模式;对于私募FOF来说,则以风险平价和多策略组合为主。

这里介绍三类公募FOF的配置方法,这也是国外共同基金FOF的主要配置方法,分别为目标日期策略、目标风险策略和风险平价策略,如表8.1所示。

表8.1 三类资产配置策略概述

8.1 目标日期策略

目标日期基金诞生于20世纪90年代。富国银行(Wells Fargo)和巴克莱(Barclays)针对美国401k计划的市场快速增长的需求,于1994年推出了业内首个目标日期共同基金系列。

由于其独有的针对养老市场特点的运作方式,目标日期基金自推出以来发展迅速。美国投资公司协会(ICI)的数据显示,截至2015年年底,美国目标日期共同基金市场规模达到7630亿美元,其中超过7000亿美元以FOF形式运作。

典型的目标日期基金的资产配置思路为:随着到期日临近而主动调整权益类和固定收益类资产配置比例,随着到期日期临近逐渐降低资产的风险。具体流程为:

(1)分析投资者所面临的风险。

(2)绘制权益类资产下滑曲线(Glide Path)。

(3)决定权益类资产和固定收益类资产下各细分类别的配置比例。

国外目标日期基金(TDFs)的资产配置原则为:在40岁之前,配置90%的权益类资产;40~72岁权益类资产配置比例逐步下降;72岁以后维持30%的权益类资产配置比例不变,如图8.1所示。

图8.1 国外目标日期基金的资产配置变化

数据来源:星潮FOF整理

8.2 目标风险策略

目标风险基金采用基于风险的投资方式。目标风险基金在成立之初便以不同的形式确定了预期风险收益水平,且往往不会随着时间的迁移而变化。

目标风险基金的名称中通常含有其风险偏好,以标普目标风险系列指数为例,通常以进取(Aggressive)、成长(Growth)、稳健(Moderate)或者保守(Conservative)等表现其风险偏好;而标普500每日风险控制系列指数的名称中则直接表明其最大控制波动率,如S&P Daily Risk Control 15%。

国外主要有两类目标风险策略指数:第一类为每日风险控制指数,代表是标普500每日风险控制系列指数;第二类为目标风险指数,代表是标普500目标风险系列指数,如表8.2所示。

表8.2 目标风险策略指数

数据来源:标普道琼斯指数公司

标普500每日风险控制系列指数由两部分组成:标的指数(风险资产,此处为标普500指数)和现金资产(无风险资产)。当标的指数的波动率上升时,资产池中标的指数的比重将会被调低,而现金资产的比重将会上升;当标的指数的波动率下降时,将进行反向操作,如图8.2所示。

图8.2 标普500每日风险控制系列指数原理图

数据来源:标普道琼斯指数公司,星潮FOF整理

一般地,每日风险控制指数将最大波动率设为5%、10%、12%及15%等水平。当标的指数(风险资产)的波动率小于预定的最大波动率水平时,可以采用杠杆进行操作,实现总资产的波动率等于最大风险水平。

8.3 风险平价策略

由于股票的风险远远大于债券的风险,导致在传统的资产配置方法中,组合的风险被股票所支配。而风险平价理论认为,应当加大债券类资产的杠杆,使债券获得与股票相近的预期收益率与波动率,从而保证整个组合风险的均衡。

纯股组合将100%的资产配置于股票市场,而全天候(All Weather)组合按照风险平价理念进行资产配置。从图8.3中可以看到,在收益率相同的情况下,全天候组合的净值曲线更加平稳与光滑,回撤也显著低于纯股组合。而从具体的统计数据可知,风险平价组合在将自身的波动率控制在纯股组合波动率1/3的同时,获得了与高风险的纯股组合相当的收益。

图8.3 风险平价与纯股组合的净值对比(1970—2015年)

数据来源:Bridgewater DaiIy Observations,星潮FOF整理

为了和传统的资产配置组合,即60/40组合(60%投资于股票,40%投资于债券)进行比较,把风险平价组合的投资标的也限制在股票和债券之内,优化目标是组合内债券资产与股票资产保持风险平价。图8.4便是这两种配置思路的净值对比。可以看到,在收益率相当的情况下,风险平价组合相比于传统资产配置组合依旧在波动率和回撤方面有着较大的优势。

图8.4 股债风险平价与传统配置组合的净值对比(1970—2015年)

数据来源:Bridgewater,星潮FOF整理

为了实现风险平价,需要通过杠杆的方式提升债券类资产的预期收益率与波动率,这就会增加债券类资产的利率风险。一旦利率大幅上涨,过高的杠杆是否会放大风险平价组合的亏损呢?

图8.5展示了全天候策略在不同利率水平下的净值表现。显然,无论是在利率上行还是下跌阶段,全天候策略都能实现较为稳定的净值增长。

图8.5 全天候策略在不同利率水平下的净值表现(1946—2015年)

数据来源:Bridgewater DaiIy Observations,星潮FOF整理

从图8.5中可以发现,全球利率水平的变化可分为泾渭分明的两个阶段:1981年之前的趋势性上涨及1981年至今的不断走低。表8.3对这两个时间段分别进行统计,考察增加了债券的杠杆后,利率水平的高低对风险平价策略的影响。

表8.3 剔除利率下行影响后风险平价策略的表现(1946—2015年)

数据来源:BIackRock:WiII Rising Rates Sink Risk Parity?

由于全球利率水平的不断下降,债券类资产自1982年以来一直处于牛市,这是否是风险平价策略在最近30年一直表现良好的直接原因呢?从表8.3中可以看到,即使剔除利率下行所带来的利好,风险平价策略依旧比传统资产配置组合有着更高的年化收益率和夏普比率。

私募FOF可以投资的资产和策略是不受限制的,可以在股票、现金、债券、期权、大宗商品中进行选择,还可以采用不同的灵活投资策略,所以相对于公募FOF来说有更大的灵活性。在实际操作中,私募FOF主要以风险平价为主。 5IirTX49AyyZUoLWYW9euaDGVt6Sbd6CVq99tkcbzvAdGQ6NVaD0nK9lH3iwhKpP



9 FOF应该如何进行风险管理

风险管理是投资的核心问题。对于FOF来说,由于资金规模巨大,尤其需要对风险进行严格管理。

9.1 基本概念

1.期望收益与风险

这可以说是投资领域的终极问题,这个问题或许没有统一的标准答案,但在很大程度上决定了如何做策略的研发、如何管理风险,以及如何进行资产配置等关键问题。

到目前为止,大家能够一致认同的就是,收益这个变量本身是随机的、不确定的,而且极难预测,因此,单纯谈论收益,从长期的系统化投资角度来讲,意义不大,一两次赚多少钱跟你的系统化投资没有太大关系,而研究的重点要放在期望收益上,也就是在概率意义及大样本意义上的期望水平。与收益相对应的是风险,如何定义风险也有着不同的版本。

期望收益来自哪里?这是做策略研发的一个核心问题。你首先要有一个基本的逻辑作为引导来开发你的策略,然后运用数据和模型进行去伪存真、抽丝剥茧的分析,但是在这个过程中,逻辑是必不可少的一条主线,那么这个逻辑就是你思考的期望收益的来源。有关收益来源问题,在第6章中有详细的阐述。

2.标准差

对于风险的度量,目前大多数采用“标准差”这个指标。那么,到底什么是标准差?简单地说,标准差就是差异的程度。

当我们面对一堆数字的时候,既可以很容易地找出这组数字的中值,也可以很容易地计算出平均值。但是只有这两个数字还不够,因为这样无法勾勒出这一堆数字整体的概念。此时,标准差的作用就可以体现出来了。

标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表一组数据里大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

如图9.1所示,有两组数的集合{1,4,9,14}和{5,6,8,9},其平均值都是7,但第二个集合里的数字明显与7距离“更近”。通过公式计算出第一个集合的标准差约为4.9,第二个集合的标准差约为1.5。

图9.1 标准差示意图

计算流程如下:首先计算出该组数据里每个数字与平均值的差,然后将所有的差值进行平方,接下来求出均值,最后开平方。

3.VaR

Group of Thirty(三十国集团,也就是G30)于1993年建议以风险资本(Capital-at-risk)即风险价值法(VaR)作为合适的风险衡量手段,特别是用来衡量场外衍生工具的市场风险。1995年,美国证监会(SEC)也发布建议,要求美国公司采用VaR模型作为三种可行的披露其衍生交易活动信息的方法之一。机构的动向使得VaR模型在金融机构中进行风险管理和监督的作用日益突出。

VaR按字面的解释就是“处于风险状态的价值”,即在一定置信水平和一定持有期内,某一金融工具或其组合在未来资产价格波动下所面临的最大损失额。摩根大通把VaR定义为“在既定头寸被冲销(be neutraliged)或重估前可能发生的市场价值最大损失的估计值”;而Jorion则把VaR定义为“在给定置信区间的一个持有期内最坏的预期损失”。

Jorion(1996)把VaR定义为

式中, E ω )为资产组合的预期价值; ω 为资产组合的期末价值; ω *为资产组合在置信水平 α 下的最低期末价值。

又设

式中, ω 0 为持有期初资产组合的价值; R 为在设定持有期内(通常是一年)资产组合的收益率。

式中, R *为资产组合在置信水平 α 下的最低收益率。

根据数学期望值的基本性质,将式(9-2)、式(9-3)代入式(9-1),则有

根据式(9-4),如果能求出在置信水平 α 下的 R *,即可求出该资产组合的VaR值。

9.2 Barra多因子风险模型

Barra是一家国际领先的投资决策和风险管理工具的提供商,其开发的Barra多因子风险模型对整个金融市场的发展影响甚大,这里介绍其部分典型的风险模型。

相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现得十分类似,如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。

通常来说,多因子模型包括宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候有不同的效果。

单个资产的多因子模型可以表示成

式中,

x ik 是第 k 个因子的风险暴露,比如我们常说的PE、PS这些值。

f k 是第 k 个因子的收益率,是通过多元回归得到的系数。

u i 是第 i 个资产的非因子收益率。

在历史上的某个时间截面,每个资产相当于一个样本,那么所有的资产就可以通过多元线性回归得到f k

x n 种资产对 k 个不同因子的风险暴露矩阵。

F k 个因子的因子收益率协方差矩阵。

Δ :非因子收益率方差对角矩阵。

这几个东西究竟有什么用呢?重要的结论出现了:

该式就是通过矩阵运算后得到的资产组合的风险。

Barra多因子风险模型在实际运用中有三大块,分别是权益风险模型、固定收益风险模型和价差风险模型,具体内容在笔者的拙著《FOF组合基金》中有详细阐述。

9.3 FOF风险管理

9.1节是有关风险管理的基本概念,9.2节阐述了Barra多因子风险模型,下面就可以将这几个模型应用在FOF的风险管理中,主要有如下几个方面。

1.投资组合风险分析

FOF的投资标的主要是基金,基金投资的主要是股票、债券等资产,所以FOF投资组合风险可以分成两层来分析。

第一层是FOF直接投资标的的投资组合风险。第二层则穿透到直接投资标的下一层,即到股票、债券这一层。第一层主要是基于基金风格、基金之间相关性、协方差的分析。第二层则跟常见的组合管理系统一样,将FOF的底层资产合起来,看成一个整体组合。底层资产我们只能通过基金的半年报和年报获取,然后分析其详细持仓,以此来分析FOF整体的风险特征。

例如,有一个FOF产品,投资一些主动基金,但是穿透分析底层资产发现,这些底层资产都是指数成分股,如中证800指数的成分股,其实这个FOF产品和一个指数基金的投资效果是差不多的,那么耗费两层费用来投资一个指数就没有太大的意义了。

另一个比较极端的例子是:有一个FOF产品,投资一些主动基金,但是穿透分析底层资产发现,这些底层资产特别偏某个特定的行业,如医药行业,其实这个FOF产品和一个医药行业指数的投资效果是差不多的,但这种投资方法的风险比较集中,需要引起管理人的注意。

FOF本身是基金,所以有一般基金的风险。同时,FOF的投资标的主要是基金,又有着与普通基金不一样的风险,如流动性风险。

由于基金的申购、赎回效率没有股票、债券直接交易的效率那么高,所以FOF的流动性问题比普通基金的流动性问题更加严重。

考虑一种极端情况:当投资者的赎回量较大时,FOF产品需要赎回其投资的标的基金,如果其中一些子基金没有到开放期无法赎回,那么FOF管理人只能赎回其他可赎回的品种,从而影响正常的投资计划。

2.风险管理系统开发

FOF风险管理系统一般包括组合层面、股票层面等。

1)组合层面风险管理系统

组合层面风险管理系统主要有以下几种。

· 规模、业绩指标监控:主要跟踪投资标的的规模和业绩。跟踪规模主要是为了防止投资比例超过规定,跟踪业绩可以帮助管理人更好地把握其投资标的。

· 风格分析:风格分析有两种方法,一种是根据历史详细持仓和历史季报中的行业分布来分析出基金的风格;另一种是用数据拟合的方法分析出基金的风格。前一种方法更加准确,但是数据比较滞后;后一种方法可以每天跟踪,但准确性不如前者。

· 费率分析:主要分析基金的管理费、赎回费、申购费等,特别注意基金是否有业绩提成、基金有哪几类份额、各种份额的费率情况。

· 运作方式分析:主要分析基金是否上市交易、申购/赎回的时间、是否定期开放、是否封闭等。

2)股票层面风险管理系统

股票层面风险管理系统主要基于半年报和年报披露的详细持仓数据,穿透到底层进行整个组合的风险分析。主要分析的方面有:分析行业暴露情况:分析组合在各个行业上的权重与市场权重的差异;分析风格暴露情况;分析哪些行业超配、哪些行业低配。其中,风格暴露情况主要分析FOF产品整体的风格是偏大盘还是偏小盘、是偏价值还是偏成长等。

3.产品最大回撤控制

最大回撤控制是产品运行管理中最重要的指标之一,对于最大回撤的控制方法如下:

(1)设置目标最大回撤φ。

(2)每天计算当前最大回撤μ。

(3)计算目标仓位Ø。

式中,σ为组合波动率。一般比较简单的仓位控制方式如下:

(4)根据计算的理论目标仓位,调整仓位到目标水平。

有了控制模型,还需要对最大回撤进行历史数据的回溯测试。下面就是一个基于沪深300指数投资的回撤控制。我们假设用这种回撤控制的方法直接投资指数,根据策略的要求调仓,可以控制回撤在目标范围之内,如图9.2和表9.1所示。

图9.2 最大回撤控制效果——全区间控制回撤20%

表9.1 最大回撤控制案例分析 5IirTX49AyyZUoLWYW9euaDGVt6Sbd6CVq99tkcbzvAdGQ6NVaD0nK9lH3iwhKpP

点击中间区域
呼出菜单
上一章
目录
下一章
×