购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

2.1 生产者原理

通过第1章的讲解,相信读者对RocketMQ有了一个基本的认识,本节将对RocketMQ中的生产者做基本介绍。

2.1.1 生产者概述

发送消息的一方被称为生产者,它在整个RocketMQ的生产和消费体系中扮演的角色如图2-1所示。

图2-1

生产者组: 一个逻辑概念,在使用生产者实例的时候需要指定一个组名。一个生产者组可以生产多个Topic的消息。

生产者实例: 一个生产者组部署了多个进程,每个进程都可以称为一个生产者实例。

Topic: 主题名字,一个Topic由若干Queue组成。

RocketMQ 客户端中的生产者有两个独立实现类:org.apache.rocketmq.client.producer.DefaultMQProducer和 org.apache.rocketmq.client.producer.TransactionMQProducer。前者用于生产普通消息、顺序消息、单向消息、批量消息、延迟消息,后者主要用于生产事务消息。

2.1.2 消息结构和消息类型

消息类的核心字段定义如下:

Topic: 主题名字,可以通过RocketMQ Console创建。

Flag: 目前没用。

Properties :消息扩展信息,Tag、keys、延迟级别都保存在这里。

Body :消息体,字节数组。需要注意生产者使用什么编码,消费者也必须使用相同编码解码,否则会产生乱码。

setKeys(): 设置消息的key,多个key可以用MessageConst.KEY_SEPARATOR(空格)分隔或者直接用另一个重载方法。如果 Broker 中 messageIndexEnable=true 则会根据 key创建消息的Hash索引,帮助用户进行快速查询。

setTags(): 消息过滤的标记,用户可以订阅某个Topic的某些Tag,这样Broker只会把订阅了topic-tag的消息发送给消费者。

setDelayTimeLevel() :设置延迟级别,延迟多久消费者可以消费。

putUserProperty(): 如果还有其他扩展信息,可以存放在这里。内部是一个Map,重复调用会覆盖旧值。

RocketMQ支持普通消息、分区有序消息、全局有序消息、延迟消息和事务消息。

普通消息: 普通消息也称为并发消息,和传统的队列相比,并发消息没有顺序,但是生产消费都是并行进行的,单机性能可达十万级别的TPS。

分区有序消息 :与Kafka中的分区类似,把一个Topic消息分为多个分区“保存”和消费,在一个分区内的消息就是传统的队列,遵循FIFO(先进先出)原则。

全局有序消息: 如果把一个 Topic 的分区数设置为 1,那么该 Topic 中的消息就是单分区,所有消息都遵循FIFO(先进先出)的原则。

延迟消息: 消息发送后,消费者要在一定时间后,或者指定某个时间点才可以消费。在没有延迟消息时,基本的做法是基于定时计划任务调度,定时发送消息。在 RocketMQ中只需要在发送消息时设置延迟级别即可实现。

事务消息: 主要涉及分布式事务,即需要保证在多个操作同时成功或者同时失败时,消费者才能消费消息。RocketMQ通过发送Half消息、处理本地事务、提交(Commit)消息或者回滚(Rollback)消息优雅地实现分布式事务。

2.1.3 生产者高可用

通常,我们希望不管Broker、Namesrv出现什么情况,发送消息都不要出现未知状态或者消息丢失。在消息发送的过程中,客户端、Broker、Namesrv 都有可能发生服务器损坏、掉电等各种故障。当这些故障发生时,RocketMQ是怎么处理的呢?

1.客户端保证

第一种保证机制 :重试机制。RocketMQ 支持同步、异步发送,不管哪种方式都可以在配置失败后重试,如果单个 Broker 发生故障,重试会选择其他 Broker 保证消息正常发送。

配置项 retryTimesWhenSendFailed表示同步重试次数,默认为 2次,加上正常发送 1次,总共3次机会。

同步发送的重试代码可以参考 org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl.sendDefaultImpl(),每次发送失败后,除非发送被打断否则都会执行重试代码。同步发送重试代码如下:

异步发送重试代码可以参考 org.apache.rocketmq.client.impl.MQClientAPIImpl.sendMessageAsync(),具体代码如下:

重试是在通信层异步发送完成的,当operationComplete()方法返回的response值为null时,会重新执行重试代码。返回值 response 为 null 通常是因为客户端收到 TCP请求解包失败,或者没有找到匹配的request。

生产者配置项 retryTimesWhenSendAsyncFailed 表示异步重试的次数,默认为 2 次,加上正常发送的1次,总共有3次发送机会。

第二种保证机制 :客户端容错。RocketMQ Client会维护一个“Broker-发送延迟”关系,根据这个关系选择一个发送延迟级别较低的 Broker 来发送消息,这样能最大限度地利用 Broker 的能力,剔除已经宕机、不可用或者发送延迟级别较高的 Broker,尽量保证消息的正常发送。

这种机制主要体现在发送消息时如何选择 Queue,源代码在 sendDefaultImpl()方法调用的selectOneMessageQueue()方法中,我们分两段来讲。

第一段代码如下:

sendLatencyFaultEnable :发送延迟容错开关,默认为关闭,如果开关打开了,会触发发送延迟容错机制来选择发送Queue。

发送Queue时如何选择呢?

第一步:获取一个在延迟上可以接受,并且和上次发送相同的Broker。首先获取一个自增序号 index,通过取模获取Queue的位置下标 Pos。如果 Pos对应的 Broker的延迟时间是可以接受的,并且是第一次发送,或者和上次发送的Broker相同,则将Queue返回。

第二步:如果第一步没有选中一个Broker,则选择一个延迟较低的Broker。

第三步:如果第一、二步都没有选中一个Broker,则随机选择一个Broker。

第二段代码主要包括一个随机选择方法 tpInfo.selectOneMessageQueue (lastBrokerName),该方法的功能就是随机选择一个Broker,具体实现代码如下:

上面这段代码标注了三个步骤,分别解释如下:

第一步:如果没有上次使用的Broker作为参考,那么随机选择一个Broker。

第二步:如果存在上次使用的Broker,就选择非上次使用的Broker,目的是均匀地分散Broker的压力。

第三步:如果第一、二步都没有选中一个Broker,则采用兜底方案——随机选择一个Broker。

在执行如上两段代码时,需要 Broker 和发送延迟的数据作为判断的依据,这些数据是怎么来的呢?

客户端在发送消息后,会调用 updateFaultItem()方法来更新当前接收消息的 Broker的延迟情况,这些主要逻辑都在 MQFaultStrategy类中实现,延迟策略有一个标准接口LatencyFaultTolerance,如果读者想要自己实现一种延迟策略,可以通过这个接口来实现。

2.Broker端保证

数据同步方式保证:在后面 Broker章节中会讲到 Broker主从复制分为两种:同步复制和异步复制。同步复制是指消息发送到Master Broker后,同步到Slave Broker才算发送成功;异步复制是指消息发送到Master Broker,即为发送成功。在生产环境中,建议至少部署2个Master和2个Slave,下面分为几种情况详细描述。

(1)1个Slave掉电。Broker同步复制时,生产第一次发送失败,重试到另一组Broker后成功;Broker异步复制时,生产正常不受影响。

(2)2个 Slave掉电。Broker同步复制时,生产失败;Broker异步复制时,生产正常不受影响。

(3)1 个 Master 掉电。Broker 同步复制时,生产第一次失败,重试到另一组 Broker后成功;Broker异步复制时的做法与同步复制相同。

(4)2个Master掉电。全部生产失败。

(5)同一组Master和Slave掉电。Broker同步复制时,生产第一次发送失败,重试到另一组Broker后成功;Broker异步复制时,生产正常不受影响。

(6)2组机器都掉电:全部生产失败。

综上所述,想要做到绝对的高可靠,将 Broker 配置的主从同步进行复制即可,只要生产者收到消息保存成功的反馈,消息就肯定不会丢失。一般适用于金融领域的特殊场景。绝大部分场景都可以配置Broker主从异步复制,这样效率极高。 NAPszhWrLpD4g83FzKyhcgjpl+LSDSNRY1HA3+Di5y+JobXxzQugJCKSIUBPB8tm



2.2 生产者启动流程

DefaultMQProducer是RocketMQ中默认的生产者实现,DefaultMQProducer的类之间的继承关系如图2-2所示,可以看到这个生产者在实现时包含生产者的操作和配置属性,这是典型的类对象设计。下面我们将介绍类对象的一些核心属性和方法。

以下是一些核心属性:

namesrvAddr: 继承自 ClientConfig,表示 RocketMQ 集群的 Namesrv 地址,如果是多个则用分号分开。比如:127.0.0.1:9876;127.0.0.2:9876。

clientIP: 使用的客户端程序所在机器的 IP地址。支持 IPv4和 IPv6,IPv4 排除了本地的环回地址(127.0.xxx.xxx)和私有内网地址(192.168.xxx.xxx)。这里需要注意的是,如果 Client 运行在 Docker 容器中,获取的 IP 地址是容器所在的 IP 地址,而非宿主机的IP地址。

图2-2

instanceName: 实例名,每个实例都需要取唯一的名字,因为有时我们会在同一个机器上部署多个程序进程,如果名字有重复就会导致启动失败。

vipChannelEnabled: 这是一个 boolean 值,表示是否开启 VIP 通道。VIP 通道和非VIP通道的区别是:在通信过程中使用的端口号不同。

clientCallbackExecutorThreads: 客户端回调线程数。该参数表示 Netty 通信层回调线程的个数,默认值Runtime.getRuntime().availableProcessors()表示当前CPU的有效个数。

pollNameServerInterval: 获取 Topic 路由信息的间隔时长,单位为 ms,默认为30 000ms。

heartbeatBrokerInterval: 与Broker心跳间隔的时长,单位为ms,默认为30 000ms。

defaultMQProducerImpl: 默认生产者的实现类,其中封装了Broker的各种API(启动及关闭生产者的接口)。如果你想自己实现一个生产者,可以添加一个新的实现,保持DefaultMQProducer对外接口不变,用户完全没有感知。

producerGroup: 生产者组名,这是一个必须传递的参数。RocketMQ-way表示同一个生产者组中的生产者实例行为需要一致。

sendMsgTimeout: 发送超时时间,单位为ms。

compressMsgBodyOverHowmuch: 消息体的容量上限,超过该上限时消息体会通过ZIP进行压缩,该值默认为4MB。该参数在Client中是如何生效的呢?具体实现代码如下:

retryTimesWhenSendFailed: 同步发送失败后重试的次数。默认为2次,也就是说,一共有3次发送机会。

retryTimesWhenSendAsyncFailed: 异步发送失败后重试的次数。默认为 2次。异步重试是有条件的重试,并不是每次发送失败后都重试。源代码可以查看org.apache.rocketmq.client.impl.MQClientAPIImpl.sendMessageAsync()方法。每次发送失败抛出异常后,通过执行onExceptionImpl()方法来决定什么场景进行重试。

以下是一些核心方法:

start(): 这是启动整个生产者实例的入口,主要负责校验生产者的配置参数是否正确,并启动通信通道、各种定时计划任务、Pull服务、Rebalance服务、注册生产者到Broker等操作。

shutdown(): 关闭本地已注册的生产者,关闭已注册到Broker的客户端。

fetchPublishMessageQueues(Topic): 获取一个Topic有哪些Queue。在发送消息、Pull消息时都需要调用。

send(Message msg): 同步发送普通消息。

send(Message msg,long timeout): 同步发送普通消息(超时设置)。

send(Message msg,SendCallback sendCallback): 异步发送普通消息。

send(Message msg,SendCallback sendCallback,long timeout): 异步发送普通消息(超时设置)。

sendOneway(Message msg): 发送单向消息。只负责发送消息,不管发送结果。

send(Message msg,MessageQueue mq): 同步向指定队列发送消息。

send(Message msg,MessageQueue mq,long timeout): 同步向指定队列发送消息(超时设置)。

同步向指定队列发送消息时,如果只有一个发送线程,在发送到某个指定队列中时,这个指定队列中的消息是有顺序的,那么就按照发送时间排序;如果某个Topic的队列都是这种情况,那么我们称该Topic的全部消息是分区有序的。

send(Message msg,MessageQueue mq,SendCallback sendCallback): 异步发送消息到指定队列。

send(Message msg,MessageQueue mq,SendCallback sendCallback,long timeout): 异步发送消息到指定队列(超时设置)。

send(Message msg,MessageQueueSelector selector,Object arg,SendCallback sendCallback): 自定义消息发送到指定队列。通过实现MessageQueueSelector接口来选择将消息发送到哪个队列。

send(Collection<Message>msgs): 批量发送消息。

下面介绍两个核心管理接口:

createTopic(String key,String newTopic,int queueNum): 创建Topic。

viewMessage(String offsetMsgId): 根据消息id查询消息内容。

生产者启动的流程比消费者启动的流程更加简单,一般用户使用 DefaultMQProducer的构造函数构造一个生产者实例,并设置各种参数。比如Namesrv地址、生产者组名等,调用start()方法启动生产者实例,start()方法调用了生产者默认实现类的start()方法启动,这里我们主要讲实现类的start()方法内部是怎么实现的,其流程如图2-3所示。

图2-3

第一步:通过 switch-case 判断当前生产者的服务状态,创建时默认状态是CREATE_JUST。设置默认启动状态为启动失败。

第二步:执行checkConfig()方法。校验生产者实例设置的各种参数。比如生产者组名是否为空、是否满足命名规则、长度是否满足等。

第三步:执行changeInstanceNameToPID()方法。校验instance name,如果是默认名字则将其修改为进程id。

第四步:执行getAndCreateMQClientInstance()方法。根据生产者组名获取或者初始化一个MQClientInstance。初始化代码如下:

由此可见,MQClientInstance实例与clientId是一一对应的,而clientId是由clientIP、instanceName 及 unitName 构成的。一般来讲,为了减少客户端的使用资源,如果将所有的 instanceName和 unitName设置为同样的值,就会只创建一个 MQClientInstance实例,具体实现代码如下:

MQClientInstance 实例的功能是管理本实例中全部生产者与消费者的生产和消费行为。下面我们来看一下 org.apache.rocketmq.client.impl.factory.MQClientInstance 类的核心属性,具体代码(篇幅原因,删去了初始化代码)如下:

下面给大家解读这段代码:

producerTable: 当前client实例的全部生产者的内部实例。

consumerTable :当前client实例的全部消费者的内部实例。

adminExtTable: 当前client实例的全部管理实例。

mQClientAPIImpl: 其实每个client也是一个Netty Server,也会支持Broker访问,这里实现了全部client支持的接口。

mQAdminImpl: 管理接口的本地实现类。

topicRouteTable: 当前生产者、消费者中全部Topic的本地缓存路由信息。

scheduledExecutorService: 本地定时任务,比如定期获取当前 Namesrv 地址、定期同步Namesrv信息、定期更新Topic路由信息、定期发送心跳信息给Broker、定期清理已下线的Broker、定期持久化消费位点、定期调整消费线程数(这部分源代码被官方删除了)。

clientRemotingProcessor: 请求的处理器,从处理方法processRequest()中我们可以知道目前支持哪些功能接口。

pullMessageService: Pull服务。

这里为什么会启动用于消费的Pull服务呢?这是一个兼容写法。通过查看源代码运行过程,读者就会发现Pull服务是由一个状态变量方法this.isStopped()控制的,这个stopped状态变量默认是False,而pullRequestQueue也是空的,所以这里只是启动了pullMessageService,并没有真正地执行Pull操作,相关代码如下:

rebalanceService :重新平衡服务。定期执行重新平衡方法 this.mqClientFactory.doRebalance()。这里的 mqClientFactory 就是 MQClientInstance 实例,通过依次调用MQClientInstance中保存的消费者实例的doRebalance()方法,来感知订阅关系的变化、集群变化等,以达到重新平衡。

consumerStatsManager :消费监控。比如拉取RT(Response Time,响应时间)、拉取TPS(Transactions Per Second,每秒处理消息数)、消费RT等都可以统计。

MQClientInstance中还有一些核心方法如下:

下面对这些方法逐一进行讲解:

updateTopicRouteInfoFromNameServer: 从多个Namesrv中获取最新Topic路由信息,更新本地缓存。

cleanOfflineBroker: 清理已经下线的Broker。

checkClientInBroker: 检查Client是否在Broker中有效。

sendHeartbeatToAllBrokerWithLock: 发送客户端的心跳信息给所有的Broker。

registerConsumer: 在本地注册一个消费者。

unregisterConsumer: 取消本地注册的消费者。

registerProducer: 在本地注册一个生产者。

unregisterProducer: 取消本地注册的生产者。

registerAdminExt: 注册一个管理实例。

rebalanceImmediately :立即执行一次 Rebalance。该操作是通过 RocketMQ 的一个CountDownLatch2锁来实现的。

doRebalance :对于所有已经注册的消费者实例,执行一次Rebalance。

findBrokerAddressInAdmin :在本地缓存中查找Master或者Slave Broker信息。

findBrokerAddressInSubscribe: 在本地缓存中查找Slave Broker信息。

findBrokerAddressInPublish :在本地缓存中查找Master Broker地址。

findConsumerIdList: 查找消费者id列表。

findBrokerAddrByTopic :通过Topic名字查找Broker地址。

resetOffset: 重置消费位点。

getConsumerStatus: 获取一个订阅关系中每个队列的消费进度。

getTopicRouteTable: 获取本地缓存Topic路由。

consumeMessageDirectly: 直接将消息发送给指定的消费者消费,和正常投递不同的是,指定了已经订阅的消费者组中的一个,而不是全部已经订阅的消费者。一般适用于在消费消息后,某一个消费者组想再消费一次的场景。

consumerRunningInfo: 获取消费者的消费统计信息。包含消费RT、消费TPS等。 o/CAjh5TLlzuj+sR5Hm2wdoCCwMEus9tuNNfsR+EtvpF/U4RSE5gPSVrwleyKazs



2.3 消息发送流程

RocketMQ客户端的消息发送通常分为以下3层:

业务层 :通常指直接调用RocketMQ Client发送API的业务代码。

消息处理层 :指RocketMQ Client获取业务发送的消息对象后,一系列的参数检查、消息发送准备、参数包装等操作。

通信层 :指RocketMQ基于Netty封装的一个RPC通信服务,RocketMQ的各个组件之间的通信全部使用该通信层。

总体上讲,消息发送流程首先是 RocketMQ 客户端接收业务层消息,然后通过DefaultMQProducerImpl发送一个RPC请求给Broker,再由Broker处理请求并保存消息。下面以DefaultMQProducer.send(Message msg)接口为例讲解发送流程,如图2-4所示。

消息发送流程具体分为3步:

第一步:调用defaultMQProducerImpl.send()方法发送消息。

第二步:通过设置的发送超时时间,调用defaultMQProducerImpl.send()方法发送消息。设置的超时时间可以通过sendMsgTimeout进行变更,其默认值为3s。

第三步:执行defaultMQProducerImpl.sendDefaultImpl()方法。这是一个公共发送方法,我们先看看入参:

图2-4

communicationMode:通信模式,同步、异步还是单向。

sendCallback:对于异步模式,需要设置发送完成后的回调。

该方法是发送消息的核心方法,执行过程分为5步:

第一步,两个检查:生产者状态、消息及消息内容。没有运行的生产者不能发送消息。消息检查主要检查消息是否为空,消息的Topic的名字是否为空或者是否符合规范;消息体大小是否符合要求,最大值为4MB,可以通过maxMessageSize进行设置。

第二步,执行tryToFindTopicPublishInfo()方法:获取Topic路由信息,如果不存在则发出异常提醒用户。如果本地缓存没有路由信息,就通过Namesrv获取路由信息,更新到本地,再返回。具体实现代码如下:

第三步,计算消息发送的重试次数,同步重试和异步重试的执行方式是不同的。

第四步,执行队列选择方法selectOneMessageQueue()。根据队列对象中保存的上次发送消息的Broker的名字和Topic路由,选择(轮询)一个Queue将消息发送到Broker。我们可以通过 sendLatencyFaultEnable 来设置是否总是发送到延迟级别较低的 Broker,默认值为False。

第五步,执行sendKernelImpl()方法。该方法是发送消息的核心方法,主要用于准备通信层的入参(比如Broker地址、请求体等),将请求传递给通信层,内部实现是基于Netty的,在封装为通信层request对象RemotingCommand前,会设置RequestCode表示当前请求是发送单个消息还是批量消息。具体实现代码如下:

Netty 本身是一个异步的网络通信框架,怎么实现同步的调用呢?我们可以通过org.apache.rocketmq.remoting.netty.NettyRemotingAbstract.invokeSyncImpl()方法来实现同步的调用,具体实现代码如下:

在每次发送同步请求后,程序会执行 waitResponse()方法,直到 Netty接收 Broker的返回结果,相关代码如下:

然后,通过putResponse()方法释放锁,让请求线程同步返回。

异步发送时有很多request,每个response返回后怎么与request进行对应呢?这里面有一个关键参数——opaque,RocketMQ每次发送同步请求前都会为一个request分配一个opaque,这是一个原子自增的id,一个response会以opaque作为key保存在responseTable中,这样用opaque就将request和response连接起来了。

无论请求发送成功与否,都执行 updateFaultItem()方法,这就是在第三步中讲的总是发送到延迟级别较低的Broker的逻辑。 o/CAjh5TLlzuj+sR5Hm2wdoCCwMEus9tuNNfsR+EtvpF/U4RSE5gPSVrwleyKazs

点击中间区域
呼出菜单
上一章
目录
下一章
×