购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

柯基犬也会函数求导

在这章结束前,我想介绍最后一只天赋惊人的动物,名叫埃尔维斯(Elvis),是一只威尔士柯基犬。埃尔维斯之所以能成为科学出版界的宠儿,得感谢它的主人蒂姆·彭宁斯(Tim Pennings)。彭宁斯住在美国的荷兰镇,就位于密歇根湖湖畔,他是镇上霍普学院的数学老师。

彭宁斯会定期和埃尔维斯一起出去溜达,在宽广的密歇根湖边惬意地散步,与此同时,他总是会带上狗狗最爱的玩具:一个网球。彭宁斯通常沿着水位线在沙滩上散步,把球斜着扔进水里(参见第42页的图表)。此时,这位数学老师发现,埃尔维斯从来没有直接游向它最喜欢的球,而是在沙滩上跑了几米之后才一个急转弯,跳进水里游完最后几米。

数学家的直觉,让彭宁斯开始思考为什么埃尔维斯没有走直线。很快,一切真相大白:狗狗会在沙滩上跑一段距离,因为它奔跑比游泳快得多,这样它就能花比直线游泳更少的时间去拿到球。

小狗埃尔维斯在密歇根湖边玩耍(彭宁斯 摄)

彭宁斯分析了这个问题,并指出:要找出最快的路径,你必须掌握微分学,因为求相同时间下最短的路径就等于求一个函数的最小值,而没有人可以立马说出这个最小值。

简单而言,在彭宁斯所做的35次试验里,埃尔维斯几乎每次都会选择非常接近最优解的路线。但是,这就等于埃尔维斯真能区分出或计算出函数曲线上升或下降的趋势吗?

这就有点儿让人难以置信了。不过,有可能确实是这样,埃尔维斯只是对如何以最快速度拿到心爱的网球有一种良好的直觉。它经常在沙滩上嬉戏,在水里游泳,它就在这当中获得了经验。但也许,这也是某种来自演化与遗传的数学直觉,可以帮它们更有效率地移动。

埃尔维斯会做微分吗?

埃尔维斯站在A点,网球在水里漂向了B点。为了计算出埃尔维斯要用多少时间才能拿到球,我们必须知道它走过的路程、奔跑的速度和游泳的速度。它在沙滩上从起点A点跑到D点,这条路线的距离是z-y。然后,它从D点游到B点,根据勾股定理,这段距离的长度是 。我们把奔跑速度设为g,游泳速度设为s。根据时间=距离/速度,就得到了计算总时间的公式:

我们要求这个函数的最小值,就要求它的一阶导数:

函数的最小值为T (y)= 0。最后,我们就得到了答案:

彭宁斯已经指出,埃尔维斯以6.4米/秒的速度奔跑,并以0.9米/秒的速度游泳。由此得出y = 0.14x。这就是说,狗狗在沙滩上跑了很长一段时间,突然转一个直角,最后游完剩下的路程。

动物具备基本的数学意识,这也使得埃尔维斯总能以最快时间找到球。同样,我们人类也要将天生的数量感归功于演化遗传。动物能做到的事,比如把物体抽象化,人类婴儿也能做到。但是,在某些挑战上,我们甚至还不如黑猩猩!我觉得特别有趣的一点是,当动物面对1—4的较小数字时,和我们一样老练,而数字一旦大于5就不行了。这恰好是我下一章要说的问题。 2BK4hiyJz35D1SaV3QAqTcCwrC4r7sYir4bDD4hm650D+HUXk/E6O//lYEXOulS+

点击中间区域
呼出菜单
上一章
目录
下一章
×