购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

天生的对数

德国生理学家恩斯特·海因里希·韦伯(Ernst Heinrich Weber,1795—1878)在170多年前发现了上文这种联系,即“韦伯定律”:“人类以对数的方式感知世界。”这不仅适用于点的集合或者绵羊群,也适用于人的感官,例如感受压力差或温差。

举例说明:假设你有两块重量不同的巧克力,一块重100克,另一块重103克。你有可能确实能感知到3克的差别。接着,你又得到了两个分别为1 000克和1 003克重的砝码。这时,你就感知不到什么差别了,你会觉得两个砝码一样重。现在,将1 003克的砝码换成一个1 030克的砝码。瞧,你就又能感知到差别了。

我们内心的对数性量表,也在一个简单的思想实验中有所显露。在1—2 000的数字空间中,随机数生成器分两次各择出10个数字。在1—2 000的区间中,这两行中的哪一行的数字分布得更均匀?

A:868、7、456、1 089、667、1 433、1 988、232、1 678、1 266

B:4、155、345、599、19、1 566、1 067、66、733、1 988

由于你觉得B行的数字似乎分布得更均匀,所以B行就是正确答案?在A行中,好像大数字太多了,但这种直观印象是错的。在A行中,数字间的差距约为200。我们将这些数字根据大小排序就能发现这一点:7、232、456、667、868、1 089、1 266、1 433、1 678、1 988。

在B行中,数字主要集中在1—100、1—1 000的区间里,只有三个大于1 000的数字。所以,明显A行分布得更均匀。

狄昂对此有一个精简的解释:我们更喜欢B行数列,是因为它更适合我们脑海中那个被压缩的数轴,即对数数轴。位于数轴前端的较小的数字,比起较大的数字更显眼。

另一个实验的结果,为根植于我们脑海的对数提供了鲜明的证据,它选取了分别来自美国和南美亚马孙雨林的儿童和成年人进行研究。南美洲原住民蒙杜鲁库人只知道基本数字系统,没有接受过任何现代数学教育。

研究人员在显示屏上为测试对象显示了数量在1—10之间的点。然后,测试对象必须通过控制器在一条量表线上调准,并标出相应点数的位置,这条线轴只有左边标有1,右边标有10,其余刻度并未标注。

美国的测试对象们干得怎么样?如预期一样,他们做到了:他们标出的5几乎正好在中间,而9非常靠近10,2在1的右边一点点。现在我们将前面通过控制器调准标注的距离绘制在一张图表里,就会得到一条近似直线。

那么蒙杜鲁库人呢?他们的操作很神奇。面对较小的数字,他们移动控制器标出的数字更靠右一些,1几乎到了2的位置,2则几乎到了4的位置。他们标出的小数字间的距离,大于直线量表上的小数字间的真实距离。而面对7、8、9这些较大数字则恰好相反,他们标出的间距缩小了很多。

因此,在上图中,蒙杜鲁库人标出的数字不是呈直线,而是呈对数曲线。科学家在早期对美国儿童进行的实验中也观察到了这种曲线。但是,只有当这些儿童没有在幼儿园和小学学过数学时才会发生。因此,对数性量表显然是与生俱来的,线性量表则是通过学习获得的。

就连完全没学过对数的人都会感到惊讶,原来他们早在上学前就知道对数了。后来在学校里,老师想教他们如何求对数,他们反而不会了。

本章中的许多例子足以说明:不管是婴儿、幼儿还是成年人,当人类在面对数字时,都具备惊人的天赋,但只有极少数人发现了这一点。这真是太可惜了!我们甚至还能利用这种天生的数量感来理解更多像对数一样复杂的现象。 3DtoYAx8F7ji8gI7ke7OYERC+83WFoIJvrnNYgguvKyYubz3E/yjqd24qVSyIJK1

点击中间区域
呼出菜单
上一章
目录
下一章
×