为了完整了解天体的运作和观测星星的位置,我将在这一节的内容中引入一些专业名词术语,并对它们进行解释说明。如果你只是想简要了解天空现象,那么这一节的内容并不重要。我想邀请一些希望深入学习的人,来和我一起研究在“天空万象”中讲述的天球。如果大家已经忘记,那就让我们重新回到 ,再来看看地球和天球的关系:一个真实存在的球体是地球,我们正站在它的表面,它带着我们每天不停地旋转;另外一个则是看起来存在的天球,它在遥远的地方包围着地球。虽然这是一个并不存在的大球,但我们一定要在脑海中想象出来,这样才能知道去什么地方寻找天体。需要注意的是,我们身处天球的中心,因此看到的天球上的东西仿佛都在球的内部表面上,而我们在地球的外部表面上。
这两个球上的许多圈点之间都有类似的关系,也是我们提到这两个球的原因。我们在前面已经说过,地球的转轴指出了我们的南北极,又向两个方向延伸横穿长空,指出了天球的南北极。
我们知道环绕着地球的赤道与南北两极的距离相等。同样,天球上也有一条赤道环绕着天球,与南北天极各呈90˚。假如我们能将它在天上画出来,就可以发现它的位置昼夜不变。我们需要更准确地想象出它的形状。它在正东和正西两个点上与地平线相交——实际上就是3月(春分)和9月(秋分),太阳在地平线上的12小时内,周日运动在天上移动的那条线路。从美国北部的各州来看,天球赤道正好穿过天顶与南方地平线之间的正中,越向南越接近天顶。而中国的大部分地区也是如此。
正如地球上有平行于赤道且环绕地球赤道南北的纬度圈一样,天球上也有两个平行于天极的圈子。地球上的纬度圈越靠近两极越小,天球上的纬度圈也是如此。
我们知道,地球上的经度是根据通过该地从北极到南极的子午圈测量出的,而这个子午圈与经过格林尼治天文台的子午圈形成的角度就是当地的经度。我们可以在天球上找到类似的东西。想象一下,一些在天球上的北天极和南天极之间朝各个方向散开的线,与天球赤道呈直角正交,如图1–3所示,这些圈被称为“时圈”(hour circle)。我们把其中之一称为“二分圈”(equinoctial colure),图1–3中也已注明,这条线正好经过春分点,这个内容我们将在下一节讨论。二分圈在天球上的作用与格林尼治子午圈在地球上的作用相同。
天球上一颗星星的位置可以与地球上一座城市的位置一样,用经纬度来确定,不过使用的名词大不相同。天文学中,天球上与地球经度相当的被称为“赤经”(right ascension),而与地球纬度相当的被称为“赤纬”(declination)。于是就有了下面这些定义,读者们一定要牢记:
图1–3 天球经纬示意图
一颗星的赤纬指的是它距离天球赤道在南北方向的视距。图1–3中的星星正在赤纬北25˚。
一颗星的赤经指的则是经过这颗星的时圈与经过春分点的二分圈形成的夹角。图1–3中的星星正在赤经3时上。
天文学中通常用时、分和秒表示星星的赤经,如图1–3标出的那样;也可以用度数来表示,如同地球上的经度一样。如果想将赤经的时分秒转化成度数,只需乘以15即可。这是由地球每小时内旋转15˚决定的。从图1–3中我们还能看出,纬度的相差体现在直线距离上。单位长度在地球上都是相同的,但经度的相差是不一样的,它的直线距离从赤道向两极逐渐变小。在地球赤道上,每经度相差111.8千米,但在南北纬45˚上,相差就只有67.6千米了;再到南北纬60˚上,每经度相差已不到56千米;到了两极则减少为0,这是由于各子午圈已经相交于此了。
由此,我们了解到,地球自转的线速度也会遵循这样的规律递减。在赤道上,经度如果相差15˚,那实际距离就相差1600千米,地球旋转的线速度为每秒460米;在南北纬45˚上,线速度减慢至每秒300米多一些;在南北纬60˚上时,线速度就只相当于赤道上的二分之一了;在两极则降为0。
如果将这样的经纬应用到天球上,地球的自转会成为唯一的难题。只要我们不动,就始终保持在地球的某一经度上。但是,由于地球的自转,天球上任何一点的赤经都在不断发生变化,尽管在我们看来是固定不动。天球子午圈和时圈的区别在于,天球子午圈随着地球转动,而时圈则固定在天球上。
地球和天球之间的每一点特性都很相似,地球自西向东绕着它的轴自转,天球仿佛自东向西旋转。假如我们将地球想象为天球的中心,有一根共同的转轴穿过它们,如图1–3所示,我们就能够更清晰地理解它们之间的关系了。
如果太阳也如同星辰那样,在天球上静止,那么我们要找到一颗已经知道赤经和赤纬的星星就不是一件困难的事。不过,由于地球每年会围绕太阳旋转一周,那么每晚相同时刻,天球上太阳的视位置就会发生变化,且永不相同。接下来,我们开始讨论公转产生的影响。