购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

命题I.12

经过直线外的一点可以向直线作垂线。

设: AB 为已知直线, C 点为给定的点。

求作: C 点可以向 AB 作垂线。

在直线的另一边任取一点 D ,以 C 为圆心, CD 为半径作圆 ΕFG (公设I.3)

AB 与圆 C 交于 G、Ε ,作 的中点 H (命题I.10) ,连接 CG、CH、CΕ (公设I.1)

那么我说: CH 便是 C 点向线段 AB 作的垂线。

因为: GH 等于 HΕ,HC 是公共边, GH、HC 分别等于对应边 ΕH、HC ;底边 CG 等于底边

所以:∠ CHG 等于∠ ΕHC (命题I.8) ,且它们为相邻角。

当一条线与另一条线相交形成邻角时,两角相等,皆为直角。这条线被称为另一条线的垂线 (定义I.10)

所以: CH 是从 C 点向 AB 线引的垂线。

所以:经过直线外的一点可以向直线作垂线。

证完 G9E+/Jkn6bKHN+DCeP1za0d8UKYWrvLOvzZ2tyHuMWJ7jWzuC/EJSmlJP+pjOwSg

点击中间区域
呼出菜单
上一章
目录
下一章
×