相邻可能这一术语不仅指出创新的可能性,也指出了创新的受限性。在生物圈不断扩张的时间表上,随意找一个时间点来分析,都可以看到,有一些创新的“大门”是没有钥匙可以打开的。在人类文化史上,我们喜欢把一个突破性的创意或点子看成是在发展史的时间表上的一次加速前进。当所有人都困在当前的各种条件限制里时,一个天才一下就将思想向前推进了几十年,顿悟出一个普通人不可能想到的奇思妙想。但实际情况是,无论是科学思想还是技术上的前进,都极少出现偏离相邻可能的现象,在人类文明发展的历史过程中也毫无例外,我们可以将此比作对一座宫殿的探访:只能先穿过最近的一扇门,才能走到下一扇门;只能从一个房间走到另一个最近的房间,直到最后把整个宫殿一一走遍。
当然,人类的思想创新与分子的构成是有区别的,后者严格受限于分子反应的固定规律。所以,在人类的思想发展史上,偶尔会出现这样一种现象:有时候,有人会突然想到一个奇妙的创意,让创新的发展在它的相邻可能空间里稍微向前跃进几步,越过其中的一间或两间房间,达到另一个原来不能一步跨入的新房间。但事实证明,这样的创意和想法通常生命力不强,很快就会面临它的“死期”,而真正的原因是这些创意和想法都脱离了所处的相邻可能空间。对于这类早夭的创意们,我们取了一个名字,称为“超前的想法”。
19世纪,英国发明家查尔斯·巴贝奇(Charles Babbage)发明了富有传奇色彩的分析机(Analytical Engine,早期的机械通用计算机),许多科技史学家称他为“现代电子计算机之父”。不过,准确地说,他应当算是现代电子计算机的“爷爷”。这是因为在分析机出现以后,经过几代人的努力,人类才真正掌握了这一创新。
巴贝奇之所以在科技史上得到大家的尊崇,是因为他一共有两项伟大发明载入史册,虽然这两项发明在他的有生之年都没有被制作成实物。第一项发明就是差分机(Difference Engine)。这种设备非常复杂,由25 000个机械部件组成,重达15吨,但设计却十分精确。它可以用于计算多项式函数,并生成三角函数表,这一点对于航海技术的发展十分重要。如果巴贝奇将这个设备真正制作出来,由他发明的差分机可能会成为世界上最先进的机械计算机。后来,伦敦科学博物馆(London Science Museum)为了纪念他逝世100周年,根据他的设计图制作了一台差分机。在几秒钟内,这台差分机就送出高达31位数的准确结果。这台差分机的速度和精确度,远超巴贝奇时代可能出现的其他设备。
尽管这台差分机的设计十分复杂,但是也没有超出维多利亚时代技术上的相邻可能空间。机械计算在19世纪下半叶得到了长足的进展,其中有很多装置都是建立在巴贝奇的设计模型之上的。
瑞典发明家乔治·舒尔茨(George Scheutz)曾经研制出一台可以实际操作的差分机,在1855年的世界博览会上首次向公众展示。之后的20年内,该设备又得到了巨大的改良,它的体积从一架钢琴的大小缩小到缝纫机般大小。1884年,美国的发明家威廉·巴罗斯(William S. Burroughs)创立了美国运算机公司(American Arithmometer Company),该公司批量生产计算器,并在全国进行销售(销售这些设备的收入,在大约一个世纪以后,仍足以支撑与他同名的孙子的生计,可以让他的孙子专心追求自己的写作事业)。 巴贝奇设计的差分机原型是一个极其天才的创意,但它并没有超越当时的相邻可能空间。
但巴贝奇的另一项神奇发明却并非如此:他发明的分析机一直无法实际生产出来。他人生的最后30年都耗在这个计划上,但却没有成功。分析机的设计方案太复杂了,于是一直停留在蓝图设计的阶段。巴贝奇于1871年去世。但在他生前,分析机中的一小部分曾经由他亲自研发、生产出来。只从设计方案来看,巴贝奇设计的分析机是世界上第一台可编程的电子计算机。可以进行编程的设计使计算机的未来发展变得具有开放性。这样的计算机并非只是为了完成单一的操作,这一点与差分机不同,差分机的设计目的是为了优化对多项式函数的计算。
分析机则和所有现代电子计算机一样,就像一个可以随意变形的“小精灵”。只要编程人员新编写出一组指令,这个“小精灵”就会相应幻化出新的形状。诗人拜伦的女儿阿达·奥古斯塔(Ada Lovelace)天资聪颖,她曾经为巴贝奇设计的、尚不能实际生产出来的分析机编写了几组指令,并因此赢得了世界上第一位程序编写员的称号。巴贝奇设计的分析机虽然没有最终问世,但却为后续电子计算机的发明提供了一个基本的参考构架。从分析机的设计上可以看出,程序可以通过穿孔卡片法输入,人们在几十年前就已经利用这一技术来为纺织机服务了。输入分析机的指令和数据都贮存在一个小小的“信息仓库”(Store)里,其实等同于现代计算机里的随机存取存储器,或者简称内存(RAM)。而具体的数据计算操作则由巴贝奇设计的一个系统工具来完成,这个系统工具被巴贝奇命名为“中央工厂”(Mill),而用工业时代的语言来说,它就是中央处理器(CPU)。
巴贝奇于1837年就将这个分析机的系统设计完成了,但却要再等上100多年,世界上才出现第一台真正的电子计算机。差分机触发了一系列的改良与实际应用,分析机却如同从地球上消失了。巴贝奇在19世纪30年代想到的一些创意是非常先进的,但到了第二次世界大战期间,才被计算机科学界的先驱重新独立地发现,并将之最终运用于计算机的研发中。
巴贝奇关于分析机的设想无疑是先进的。可为什么他设计的分析机并不能设计成形,反而进入了一个发展的死胡同呢? 如果只是打个趣的话,那是因为分析机的设计创意“逃离”了当时的相邻可能空间。 但如果具体而实际地分析原因,则可以发现,分析机的发展之所以不成功,是因为巴贝奇手边没有正确的、可供利用的组成部件。假设巴贝奇按照自己的设计方案制作出分析机,人们并不能确定它是否可以正常运作。因为,巴贝奇企图在蒸汽机时代,为很多年以后的电子革命时代提前发明可用机器,虽然动机是美好的,但在现实中却行不通。
与我们日常使用的电子计算机不同,巴贝奇设计的分析机完全是由齿轮和开关组合而成的。所用的零件数量大得惊人,其复杂程度更是令人望而却步。在分析机的系统里,数据信息的传输好像是一些金属小颗粒在跳着芭蕾舞步前行,步法则是由编程员提前精心编写而成。这种机器的维修和护理是无比困难的,基本上无法实现。比这更不现实的是,其运作速度奇慢无比。巴贝奇曾经在阿达·奥古斯塔面前放豪言,他认为这种分析机在3分钟内就可以完成两个20位数字的乘法运算。巴贝奇肯定不是世界上第一个对自己的作品宠爱有加的技术人员。但即使假设他的说法是正确的,他引以为傲的运算速度却并不快。以那样的速度来运行一些复杂的程序时,系统基本上会慢到崩溃。数字时代的第一代计算机完成同一项运算只需要几秒。而在巴贝奇的分析机做一次运算的3分钟时间里,一台iPhone手机就可以进行上百万次这样的运算了。可编程的计算机必须具备真空管,更加理想的情况是,必须具备集成电路。在这些器件里,信息可以像微小电子的脉冲一样流动,而不是像分析机里的那些因为蒸气动力催动的金属齿轮一样,“咔嚓声”“叮当声”“嗡嗡声”不断。
我们可以来看看另一个相似的案例YouTube,它的时间跨度则短得多。
如果赫利、陈士骏和卡里姆提前10年想到YouTube的创意,那么这项发明就注定是失败的。因为,发明一个视频分享的网络平台不在当时的相邻可能空间内。首先,当时绝大多数网络用户都是通过拨号连接进入互联网的,且网速十分缓慢。即使从互联网上下载一张小图片,也要花上几分钟的时间。当时速度只有14.4 bps的“猫”拨号联网,如果要下载一段普通的、两分钟的YouTube视频,需要花一个小时左右的时间。
YouTube面市初期便能一炮打响,还有另一个原因。那就是当时Adobe公司研发的Flash平台早已在网络上得到了大众的认可,而YouTube的服务平台是借了Flash平台的风,并不需要重新开发一个新平台,于是节省了人力和物力。同时,这也让YouTube的开发人员专注于解决如何优化视频的分享模式,如何创新视频的讨论界面。回顾一下,直到1996年下半年Flash才成功推出,而到了2002年,Flash才可以支持视频格式的文件。
再来看看我们之前讨论过的关于微生物学的例子。如果要在20世纪30年代提出差分机的创意,这无异于“原始汤”里的一堆脂肪酸企图成为细胞膜。差分机系统里的计算器是一个伟大的创举,也是非常先进的,但却依然没有超出相邻可能空间的限制。也正是因为这一点,在巴贝奇的差分机创意首次面世以后的几十年的时间里,关于这个创新的重复且实用的独立发明一再出现。 但如果想在1850年就成功地推出分析机,或者在1995年就成功地运作YouTube,就会像异想天开企图自动组合成海胆的脂肪酸一样。创意是完全正确的,只是所处的环境并不成熟。