购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

前言

还原论 [1] 是对这个世界最自然的理解方式。它是说“如果你理解了整体的各个部分,以及把这些部分‘整合’起来的机制,你就能够理解这个整体”。只要是精神正常的人就不会反对还原论。

——侯世达(Douglas Hofstadter),
《哥德尔、艾舍尔、巴赫——集异璧之大成》

从17世纪以来,还原论就一直在科学中占据着主导地位。还原论最早的倡议者之一笛卡儿这样描述他的科学方法:“将面临的所有问题尽可能地细分, [2] 细至能用最佳的方式将其解决为止”,并且“以特定的顺序引导我的思维,从最简单和最容易理解的对象开始,一步一步逐渐上升,直至最复杂的知识”。

从笛卡儿、牛顿等现代科学奠基者的时代,直到20世纪初,科学的主要目标都是用基础物理学来对一切现象进行还原论式的解释。19世纪末许多科学家都赞同物理学家迈克耳孙1894年说的一句名言:“大部分大的基本原理似乎 [3] 已经被明确建立起来了,今后的进展主要是将这些原理严格应用到值得我们注意的一些现象中去。”

此后的30年里,物理学又有了相对论和量子力学这样革命性的发现。但20世纪的科学也见证了还原论梦想的破灭。虽然基础物理学和还原论对于解释极大和极小的事物取得了伟大的成就,但在对于接近人类尺度的复杂现象的解释上,它们却保持惊人的沉默。

还原论的计划在许多现象面前都止步不前:天气和气候似乎无法还原的不可预测性;生物以及威胁它们的疾病的复杂性和适应性;社会的经济、政治和文化行为;现代技术与通信网络的发展和影响;智能的本质以及用计算机实现智能的可能前景。对复杂行为如何从简单个体的大规模组合中出现进行解释时,混沌、系统生物学、进化经济学和网络理论等新学科胜过了还原论,反还原论者的口号——“整体大于部分之和”——也随之变得越来越有影响力。

20世纪中叶,许多科学家意识到,这类现象无法被归入单个学科,而需要在新的科学基础之上从交叉学科的角度进行理解。一些人开始尝试建立新的基础,这其中包括控制论、协同学、系统科学,以及最近才出现的——复杂系统科学。

1984年,来自不同学科的24位科学家和数学家在新墨西哥州圣塔菲的高原沙漠会聚一堂,讨论“科学中涌现的综合”。 [4] 他们的目标是筹划建立一家新的研究机构,“致力于研究各种高度复杂和相互作用的系统,这些系统只有在交叉学科的背景下才能研究清楚”并“推动知识的统一和共担责任的意识, [5] 与目前盛行的知识界的各自为政作斗争”。就这样,圣塔菲研究所作为复杂系统的研究中心被建立起来了。

1984年我还没有听说过“复杂系统”一词,虽然头脑中已经有了类似的想法。我当时是密歇根大学计算机系的一年级研究生,研究方向是人工智能,也就是让计算机像人一样思维。事实上,我的一个目标就是理解人类如何思维——万亿个微小的脑细胞以及它们的电和化学通信如何涌现出抽象思维、情感、创造性,甚至意识。我曾深深迷恋于物理学和还原论的目标,后来才领悟到,目前的物理学对于智能可以做的很少,即便是专门研究大脑细胞的神经科学,也无法理解思维如何从大脑活动中涌现出来。很显然还原论者对认知的研究是误入歧途——我们根本无法在单个神经元和突触的层面上理解认知。

因此,虽然我以前没有听说过“复杂系统研究”,它却很快引起了我的强烈共鸣。同时我也感到,我自己的研究领域——计算机科学——在这里可以大有作为。受研究计算的先驱们影响,我觉得计算的思想要比操作系统、编程语言、数据库之类的东西深刻得多,计算的本质与生命和智能的内在本质有密切的关联。我很幸运,在密歇根大学,“自然系统中的计算”是系里的核心课程,与软件工程和编译器设计一样。

1989年,我攻读研究生的最后一年,我的博士生导师侯世达受邀参加在新墨西哥州洛斯阿拉莫斯举行的主题为“涌现计算”的研讨会。 [6] 他太忙了抽不出时间,因此就让我替他去。在这样高水平的会议上报告自己的工作让我既兴奋又害怕。就是在这次会议上,我第一次遇见了一大群和我抱有同样想法的人。我发现他们不仅为这样的想法取了一个名字——复杂系统——而且他们在圣塔菲附近的研究所正是我想去的地方。我决定在这里争取一个职位。

不断坚持,再加上运气,我终于获得了圣塔菲研究所(Santa Fe Institute)的邀请,在那里访问一个夏天。一个夏天又延长为一年,后来又延长了一年。最终我成为研究所的常驻研究人员。来自不同国家和学科的人们聚集在这里,一起从不同的角度来探索同样的问题。我们如何超越还原论的传统范式,对似乎无法还原的复杂系统形成新的理解?

这本书源自我为圣塔菲的乌拉姆纪念讲座(Ulam Memorial Lecture)做的演讲——这个讲座为普通听众举办,是关于复杂系统的年度系列讲座,以纪念伟大的数学家乌拉姆。我的系列演讲的题目是“复杂性科学的过去和未来”。要为非专业听众讲清楚领域广泛的复杂性研究,让他们理解研究的现状和广阔的前景,这极具挑战性。我的角色很像是在一个幅员辽阔、文化多样的异国的导游。我们只有很短的时间来了解历史背景,参观著名景点,并感受这里的风土人情,必要时还要进行翻译以便于理解。

这本书就是由这些讲座扩充而成——就像观光指南。书中讲述的是让我也让研究复杂系统的其他人曾经或正在着迷的问题:自然界中我们认为复杂和具有适应性的系统——大脑、昆虫群落、免疫系统、细胞、全球经济、生物进化——如何通过简单规则产生出复杂和适应性的行为?相互依赖而又自私的生物是如何一起协作,以解决影响它们整体生存的问题?这些现象存在普遍规律吗?生命、智能和适应性能用机械和计算实现吗?如果能,我们又能不能建造出真正具有生命和智能的机器?如果能做到,我们又应不应该这样做呢?

我听说随着学科间的界线变得模糊,科学术语的意义也会变得模糊。研究复杂系统的人们谈论各种模糊的概念,例如自发秩序、自组织、涌现(包括“复杂性”本身)。这本书的一个主要目的就是为这些人所谈论的提供一幅清晰的图景,并探讨这些交叉学科的概念和方法是否能产生出实用的科学和新的思想,以解决人类面临的各种难题,例如疾病的传播、世界自然和经济资源分配的不公平、武器扩散和冲突的增多,以及人类社会对环境和气候的影响。

这本书就像一本复杂性科学的核心思想的观光指南——它们从何而来,又将到哪里去——再加上我自己的一些见解。对于正在发展中的科学领域,其核心思想、意义以及可能导致的后果,人们的认识会(略)有不同。因此我的观点与其他专家也许会不一样。本书中一个重要的部分就是阐释这些差别,另外我也将尽我所能介绍一下那些未知的或刚刚开始被理解的领域。正是这些使得科学引人入胜,值得去探索和了解。我希望能让读者也感受到这些思想的迷人魅力和探索它们的过程中那种无可比拟的兴奋感觉。

本书分为5部分。在第1部分我将介绍4个主题的历史和内容,这4个主题是复杂系统研究的基础:信息、计算、动力学和混沌、进化。在第2到第4部分我将阐述这4个主题如何在复杂性科学中被组织到一起。我将描述如何在计算机中模拟生命和进化,以及计算的概念反过来又如何被用来解释自然系统的行为。我还会介绍网络科学的发展,以及网络科学发现的社会群体、互联网、传染病和生物代谢等各种系统中存在的深刻共性。另外,我还会用各种例子说明如何测量自然界中的复杂性,它又如何改变我们对生命系统的认识,以及这些新的认识能不能引导智能机器的设计。我会介绍复杂系统的各种计算机模型,以及这些模型所面临的风险。最后,书的末尾还将讨论寻找复杂性科学一般性原则的问题。

要理解书中内容无需数学或科学的背景知识,在涉及的时候我会小心地循序渐进。我希望这本书对专家和非专业读者都会有价值。虽然讨论不是技术性的,但我还是会尽力做到言而有物。注释中给出了引文的出处和讨论的附加内容,以及为想深入学习的读者准备的科学文献索引。

你对复杂性科学感到好奇吗?想不想探索一番呢?让我们出发吧。 MwFJzAdQUCMpdqvX9swMucnLalbWXrnOj7R6E7IQhKS5WbdtOsuH5zT9gB2YCs6a

点击中间区域
呼出菜单
上一章
目录
下一章
×