购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

3.2 动力电池系统总布置设计

3.2.1 外部布置设计

整车厂根据整车车身地板结构,并考虑整车底盘、电器件、内外饰件的影响。同时,结合以下限制条件和满足的要求,初步给出电池包可布置的位置和可放置的空间范围边界。

1)基于电动车辆的乘员数量、续驶里程等设计目标,初步估算需要的电池包容量大小,并推算出动力电池包的空间需求。

2)整车配置要求(例如行李箱空间要求,影响电池包的布置位置及空间)。

3)整车最小离地间隙(一般满载最小离地间隙大于100mm)。

4)电池包的防护结构(与地板之间的安全间隙、碰撞防护结构等)。

5)工艺装配需求(机械安装接口、电气连接接口及装配操作间隙)。

一般情况下,基于传统燃油车产品平台进行改造开发的电动车,其在整车上的布置主要分布在表3.4所示的6个区域。

表3.4 整车电池包可布置区域表

续表

1.工字形电池包安装

早期的电动汽车,都是基于传统的燃油车进行改装,去掉发动机、变速器、油箱和一些传动装置,这样整车上空出来的空间,是最适合安装电池包的。

一般安装于B、D区:中央通道和后排座椅下方。

华晨宝马之诺1E纯电动汽车就有一个典型的工字形电池包(图3.12),在宝马X1车型的基础上,充分挖掘可以利用的布置空间,前后串联的三个高电压蓄电池单元则被安装在车身的前部(前机舱盖下方的发动机位置)、中部(传统的传动轴通道中)和后部(传统燃油箱的位置),这样的设计可以确保更好的前后轴负荷分配,赋予车辆更低的重心,同时让车辆在碰撞发生时更加安全。

图3.12 之诺1E纯电动汽车电池包安装位置

2.T字形电池包安装

雪佛兰沃蓝达(Volt)是典型的T字形电池包布置(图3.13),因为它是一款增程式电动车,因此发动机和油箱仍然保留,设计师充分利用了去掉变速器和传动轴后的空间和后排座位下面的空间,将电池包设计成一个T形。

一般安装于B区:主要利用中央通道。

不管是华晨宝马之诺1E,还是雪佛兰沃蓝达,都是在传统燃油车基础上做了非常小的改动,空间非常有限,能够装载的电池包体积和重量都受限,因此容量不大,续驶里程也有限。华晨宝马之诺1E采用宁德时代(CATL)的磷酸铁锂电池,电池包容量为27kW·h,可达到150km的续驶里程,第一代雪佛兰沃蓝达采用LG的锰酸锂电池,电池包容量为16kW·h,纯电续驶里程为64km。

图3.13 沃蓝达T字形电池包及安装位置

3.土字形电池包安装

要想进一步提升整车的续驶里程,就必须要增加整车的电量,有两个可行的途径:提高电池的能量密度,在同样的空间内存储更多的电量;扩展电池包的空间,增大电池包的体积和重量,进而增加可用电量。

电池能量密度的提升是比较缓慢的,受制于动力电池技术的进步速度,很难在短时间内大幅度改善,那么就需要在电池包的体积上面做文章,从整车空间上挖掘出更多的空间,来装载更多的电池,存储更多的电量,从而提升电动汽车的续驶里程。

电池包一般安装在B、C、D区:位于底盘正下方。

2015版e-Golf电池包是一个典型的土字形结构(图3.14),充分利用了整车上可以利用的空间。总电量为24.2kW·h,总电压为320V,容量为75A·h,电池包重量为313kg,体积为229.4L。2016年起,大众选用新的三元电池单体,在原有体积不变的情况下,电池包的总电量达到35.8kW · h,整车的续驶里程也从134 km 提升至200 km。

图3.14 e-Golf 土字形电池包及安装位置

吉利帝豪EV车型则是另一款土字形电池包的代表(图3.15),为了装载更多的电池,吉利还对整车的底盘做了二次开发,腾出了更多的形状规则的空间,用于容纳锂离子电池组。2015 款的帝豪EV 采用了宁德时代的三元电池单体,电量为44kW·h,续驶里程达到250km。2017款的帝豪EV,仍然采用同样的三元电池单体,但是对电池包、热管理系统和动力总成做了设计优化,从而使得续驶里程达到了300 km。

图3.15 吉利帝豪EV电池包安装位置

土字形的电池包,可以将电动汽车的续驶里程提升到200~300km,如果想进一步提升续驶里程,就有相当大的难度了,因为整车可拓展的空间已经被挖掘得差不多了。

4.一体式(滑板式)电池包安装

受限于传统燃油车的结构局限,不管怎样挖掘可用空间,始终不能实现电动汽车的最优化设计。客户对于电动汽车续驶里程的需求,已经从100km、200km,提升到300km、400km,甚至是500km以上。在这种情况下,电池包和底盘的一体化设计,已经逐渐成为一种必然的趋势。

这是一种全新的产品思路,整车的设计需要围绕核心零部件电池包来展开,将电池包进行模块化设计,平铺在车辆的底盘上,以最大限度获得可用空间,调整整车的重心位置,同时还可以利用电池包的结构来加强底盘的强度和刚度,也可以利用整车的框架强化对电池包的结构防护(图3.16)。

一般安装于B、C、D区:对整车的底盘做了二次开发,腾出了更多形状规则的空间。

图3.16 一体式电池包安装示例

最早采用这种方案来做整车设计的是特斯拉,在畅销的Model S和Model X车型上,特斯拉都采用了电池包和底盘的一体化设计,以达到最优的车辆性能。得益于领先对手的设计思路,Model S车型可以给用户提供多种规格的电池包容量,从60kW·h一直扩展到90kW·h,续驶里程可以达到惊人的526km(P90D版本),这是对传统燃油车进行改造所无法达到的。

在特斯拉的成功指引下,大众和宝马等车企也纷纷跟进,推出了自己的一体式电动汽车产品解决方案。

大众汽车集团推出了电动汽车专用平台:MEB平台,预计将于2019年投入使用,该平台具有较强的扩展性。这意味着,大众的设计师可以通过改变轴距、轮距以及座椅布局,以应用于更多种类的车辆制造。而安装在底盘上的电池组则尤其引人瞩目(图3.17),由于完全模块化设计,它允许工程师按照适用车辆的类型来调整电池组的数量和大小,从而满足不同车型的需求。大众汽车集团希望借助MEB平台(电动车模块化平台)将纯电动车的续驶里程提升至400~600km,完全可以达到目前燃油车的标准。

图3.17 大众一体式电池包示例

3.2.2 内部布置设计

动力电池系统箱体内部的整体排布有以下建议:排布规整对称;高低压“各行其道”;预留安全距离;电气件、模组隔离;考虑热管理系统。

模组排布(图3.18)需要尽量排布规整,使电池包的重心尽量在几何中心,需要考虑电池包配重对整车的影响。

电连接(图3.19)在整体排布时,需要考虑高低压线束走线空间、固定高低压线束的位置和结构、高低压连接器的安装位置及连接形式。

热管理根据电池单体的性能和整车的使用条件初步确定热设计的形式,预留加热、散热的通道和安装空间,确保热设计的合理性和高效性(图3.20)。

箱体纵横梁(图3.21)选择车身上钢板等级和厚度较高部分作为基础,通过受力分析和计算,确定纵横梁具体的结构、材料型号和厚度。

图3.18 模组排布

图3.19 电连接

图3.20 热管理系统

图3.21 电池包箱体纵横梁

除了上面考虑的这些因素外,还需要考虑安全、成本、环境等方面的因素,比如安全方面的防火、阻燃、定向泄放,成本方面的减少异型结构等。

按照电池单体能量密度300W·h/kg和电池包能量密度260W·h/kg的目标来计算,电池包系统的集成效率要做到85%,而当前乘用车电池包的集成效率普遍在65%左右,这意味着集成效率需要大幅度提升,才能达成目标。

要提高电池包的集成效率(图3.22),有两个可行的途径,一是优化电池包内部的结构设计,大幅度减少电池包内部的组件数量,将更多的组件和功能集成在模组和箱体上,从而减轻重量;另一个是采用轻量化的材料,如采用铝型材或复合材料代替高强度钢,采用塑胶件代替金属件等,也可以减轻重量。

图3.22 提高集成效率 nQfSnZ7AAMRwSv8oJvrDLTxlCNHSvLogIFd0Ntt5/VopGwpjr566BAhUlHxQJrOF



3.3 动力电池箱体设计

动力电池系统主要受两种力的作用,一种为接触式受力,另一种为非接触式受力,由防护结构和连接结构对产品进行保护,使其满足功能要求且能通过相应的测试验证。

动力电池系统的防护结构主要包括箱体、支架、模组框架、冷却系统、箱体内部固定结构(固定模组、电气件、高低压线束、连接器、冷却系统等结构)。

在设计防护结构和连接结构时,需要将定性的指标转化为一个定量的设计参数。

3.3.1 强度设计

电池箱体的设计主要包括上盖、下箱体、密封结构件、压条、支架等,其材料选择和结构形式主要取决于电池箱体的尺寸大小、结构形式(规则或异型结构)、机械强度和轻量化目标等要求。

电池箱体结构设计要点如下:

1)能量密度:比能量、轻量化。

2)热管理:热均匀性、热管理系统效率、导热、散热、保温、加热。

3)连接可靠性:过电流能力、电气连接可靠性、机械连接可靠性(防松)。

4)可制造性:生产效率、优率、成本。

5)机械安全:机械振动、冲击、强度、碰撞、挤压、侧翻、底部球击、跌落等。

6)电气安全:高压标识、电气绝缘、电气间隙、爬电距离、防触摸、等电位联结。

7)防护安全:防水防尘(IP67&IP6K9K)、防盐雾腐蚀。

8)其他:电池箱火烧、热失控蔓延控制、电池箱内外压力平衡和紧急排放。

1.箱体边界尺寸确定

箱体的边界尺寸来源于整车对动力电池系统的整体要求,也受到来自下一层级模组、高压箱的影响。通过上下层级因素的综合考虑,已确定箱体的边界尺寸。

标准箱体的需求边界综合考虑了整车、模组和高压箱(包含在箱体内部,还是独立于箱体)边界尺寸的需求,考虑了规模化生产、售后维护、后续梯次使用和回收利用等因素,因此标准电池包箱体是能平衡各方面因素的比较成熟的选择。

2.上盖设计

电池箱体上盖主要起密封作用,受力不大,常用的材料主要有钣金、铝板材和复合材料。钣金和铝板材上盖有两种成型工艺:折弯+拼焊和一体冲压成形,复合材料一般使用一体成型即模压。上盖设计考虑因素见表3.5。

表3.5 上盖设计考虑因素

除了上面的考虑因素外,还有加工的可行性、成本等其他方面的考虑,如加强筋等附加特征(表3.6)。

表3.6 防撞梁、加强梁和加强筋对比

防撞梁和加强梁结构形式稍有差异,但都是对箱体局部点的加强,当需要对箱体面上强度加强时,主要使用圈梁。

3.下箱体设计

下箱体作为主要机械承载部件,设计时相对复杂。确定边界尺寸后,下箱体需考虑的有机械强度、等电位、防腐蚀、密封设计、轻量化等,其中机械强度、密封设计、轻量化是主要的关注点(密封设计和轻量化将在后面章节介绍)。机械强度的设计内容包括:安装点设计、内部加强梁设计(图3.23)、防撞梁设计。机械强度设计考虑因素见表3.7。

图3.23 加强梁框架式结构

表3.7 机械强度设计考虑因素

安装点除了上面需要关注的三个方面外,安装点的结构形式也需要关注,安装点结构形式见表3.8。

表3.8 安装点结构形式

3.3.2 轻量化设计

在电池包的轻量化设计中,有两个方向:一个是系统层面。另一个是详细设计层面。

系统层面的轻量化设计,首先应该是从电池单体的选择入手,不同体系和尺寸的电池单体与动力电池系统都有一个匹配度的问题;通过优化整体排布,实现空间的最大利用率;还有就是在系统层面,减少层级。本节主要介绍详细设计层面,系统层面就略过。

详细设计层面的轻量化可以从几方面入手:新的成组方式、新型材料的应用、尺寸优化、拓扑优化和制造工艺的选择。

1.新的成组方式

现在的电池包设计,大部分都采用三级结构,即模组级、箱体级和系统级。在这种设计中,模组级的成组效率(电池单体占模组的重量百分比)可以做到80%甚至是90%以上,而箱体级的成组效率做得比较好的也就80%多一点,但两者相乘后总效率不高,在不算高压盒的情况下,系统级别的成组效率也只能达到70%上下。

以商用车为例,现在的商用车大都使用磷酸铁锂电池单体,能量比重量做得好的也就140~150W·h/kg,按照国家补贴要求,能量比重量在115W·h/kg以上,才能拿到比较好的补贴,那么系统的成组效率需要做到80%以上,势必需要新的成组方式。新的成组方式有两个方向,见表3.9。

表3.9 新的成组方式方向

2.新型材料的应用

轻量化材料是指可用来减轻动力电池系统自重的材料,它有两大类:一类是低密度的轻质材料,如铝合金、复合材料等;另一类是高强度钢。轻量化材料的特点见表3.10。

表3.10 动力电池系统轻量化材料

在动力电池系统中应用新型材料部件的示例见表3.11。

表3.11 新型材料应用示例

随着新材料和新技术的逐渐应用,动力电池系统的生产工艺也在发生变化(表3.12)。比如,冲压、板材温冲压、型材挤压和结构件铸造代替传统方法,以及焊装、涂装都与传统不同,使得铝合金的涂装工艺发生了变化,这里面比较有代表性的就是特斯拉。碳纤维的工艺为纤维编制然后烘烤,它的连接方式可以是预埋一些连接件,其代表车型就是长城华冠。

表3.12 轻量化材料典型加工工艺

3.3.3 IP防护设计

电池包是一个内部带很大能量的电子产品,它的电压一般都超过安全电压60V,并且对导电的液体很敏感,导电液体一旦进入电池包内部,很可能造成电池包功能异常,甚至引起短路、起火、爆炸等情况。所以,在进行电池包结构设计时,必须考虑IP防护。

IP防护分为两块:一是接触防护,IPXXB和IPXXD;二是防水防尘,PXX。

目前,使用比较成熟的电池包箱体主要有钣金箱体、铝合金箱体和复合材料箱体,不同材料的箱体,在进行IP67密封设计时,有不同的要求(表3.13)。

表3.13 箱体IP防护设计要点

对于上下箱体的安装面,除了考虑水平度外,安装面的结构设计对IP防护也有不同的影响(表3.14)。

表3.14 上下箱体安装面密封结构

除了对上下箱体安装面密封结构有要求外,对于插接件与箱体的安装固定方式也必须满足IP等级要求,在设计时通常采用两种方式:

1)箱体插接件安装孔设计为盲孔这种方式简单,但是存在结构强度不足的缺点。

2)为了达到箱体的强度要求,可以先将插接件安装在板上,再把板安装在箱体上并做密封处理。

3.3.4 防火阻燃设计

动力电池系统是一个长期、频繁使用的产品,它应用的环境比较多样,并且应用场合的人员也比较集中,一旦发生极端情况(起火、爆炸),如果没有相应的保护措施,将对社会造成很大的危害。因此,在防火和阻燃方面需要对动力电池系统做针对性的设计。

防火与阻燃可以从两方面来考虑:①被动防火与阻燃;②主动防火与阻燃(表3.15)。

表3.15 防火阻燃设计

现在,防火的材料主要由无机黏合剂、耐火的矿物质填料、难燃型有机树脂、难燃防火添加剂构成。在动力电池系统中,结构件经常添加防火添加剂增强防火阻燃能力,比如在密封垫中添加防火阻燃材料。

对电池着火来说,水是最有效的灭火材料,但由于动力电池系统空间限制,不可能储存大量的水,所以电池系统的消防系统可以采用多级设计:在箱体内部安装小剂量的消防装置,抑制电池系统的开始火势,然后通过箱体面板上的接口连接箱外消防系统再抑制,最后通过箱体面板上的接口,接入消防水管达到完全扑灭效果。

3.3.5 防腐设计

防腐蚀可以用不同的防腐等级来表达,主要根据产品的使用寿命和使用环境来确定零部件的防腐等级。例如使用寿命为8年,并且在沿海地区使用,那么产品的防腐等级一般要达到:中性盐雾时间480h,参考汽车行业规范(表3.16)。

表3.16 动力电池系统常用防腐蚀工艺

续表

3.3.6 防呆设计

动力电池系统的零件数量高达数百个,高压连接可达数十处,在生产、安装及测试过程中,很容易出现因人员误操作,导致电池系统短路起火,甚至人员遭受电击的事故,因此,防呆设计对人员安全和财产安全至关重要,可大大避免不必要的人员和财产损失。

通常来说,防呆可以分为:机械防呆、颜色防呆和标志防呆(表3.17)。

表3.17 动力电池系统防呆设计

续表

例如BMW i3电池系统的设计,电池系统内部模组连接采用串联结构,控制高压线束长度,并在高压串联线上增加标志,以防止人员误操作风险。

电池系统内部高压线束接头正负极均必须采用防呆结构设计,以控制人员误操作风险。再如,快插高压连接器,有键位、颜色和标志的三重防呆设计。在接口位置比较集中的部位,对不同高压连接选用同系列快插连接器时,应当选用键位、颜色和标志都不一样的高压连接器。 nQfSnZ7AAMRwSv8oJvrDLTxlCNHSvLogIFd0Ntt5/VopGwpjr566BAhUlHxQJrOF

点击中间区域
呼出菜单
上一章
目录
下一章
×