购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

7.魔方与上帝之数

研究魔方的人多了,就会出现关于魔方速度的提升,随之而来的比赛必定少不了。从1981年开始,魔方爱好者们开始举办世界性的魔方大赛,从而开始缔造自己的世界纪录。这一纪录被不断地刷新着。最令人吃惊的成绩仅为7.08秒。

然而,这样的成绩却有着一定的偶然性,为了减少这种偶然性,从2003年开始,魔方大赛的冠军改由多次复原的平均成绩来决定。目前这一平均成绩的世界纪录为11.28秒。这些记录的出现,表明魔方虽有天文数字般的颜色组合,但只要掌握窍门,将任何一种组合复原所需的转动次数却并不多。

值得大家思考的问题是,究竟需要多少次的转动,才能保证无论什么样的颜色组合都能够被复原呢?这个问题引起了很多人,尤其是数学家的兴趣。这个复原任意组合所需的最少转动次数被数学家们戏称为“上帝之数”(God’snumber),而魔方这个玩具世界的宠儿则由于这个“上帝之数”一举侵入了学术界。

要研究“上帝之数”,首先当然要研究魔方的复原方法。在玩魔方的过程当中,很多人都知道,将任意一种给定的颜色组合复原都是很容易的事情。这一点已经由魔方的无数杰出纪录所示范。但是,魔方玩家们所用的复原方法是便于人脑掌握的方法,却不是转动次数最少的,因此无助于寻找“上帝之数”。寻找转动次数最少的方法是一个有一定难度的数学问题。当然,这个问题是难不倒数学家的。早在20世纪90年代中期,人们就有了较实用的算法,可以用平均15分钟左右的时间找出复原一种给定颜色组合的最少转动次数。从理论上讲,如果有人能对每一种颜色组合都找出这样的最少转动次数,那么这些转动次数中最大的一个无疑就是“上帝之数”。但可惜的是,4325亿亿这个巨大的数字成为了人们窥视“上帝之数”的拦路虎。如果采用上面提到的算法,哪怕用一亿台机器同时计算,也要超过一千万年的时间才能完成。

因此,只得从数学的角度来看待魔方最少次数转动这个问题。数学的角度看,魔方的颜色组合虽然千变万化,其实都是由一系列基本的操作(即转动)产生的,而且那些操作还具有几个非常简单的特点,比如任何一个操作都有一个相反的操作(比如与顺时针转动相反的操作就是逆时针转动)。对于这样的操作,数学家们的军火库中有一种非常有效的工具来对付它,这工具叫做群论(grouptheory),它早在魔方问世之前一百四十多年就已出现了。据说德国数学大师希尔伯特(D.Hilbert)曾经表示,学习群论的窍门就是选取一个好的例子。自魔方问世以来,数学家们已经写出了好几本通过魔方讲述群论的书。因此,魔方虽未成为空间几何的教学工具,却在一定程度上可以作为学习群论的“好的例子”。

终于,在1992年,德国数学家科先巴(H.Kociemba)提出了一种寻找魔方复原方法的新思路。他发现,在魔方的基本转动方式中,有一部分可以自成系列,通过这部分转动可以形成将近200亿种颜色组合。利用这200亿种组合,科先巴将魔方的复原问题分解成了两个步骤:第一步是将任意一种颜色组合转变为那200亿种组合之一,第二步则是将那200亿种组合复原。

但是,即使是如此,要用科先巴的方法对“上帝之数”进行估算仍不是一件容易的事。尤其是,要想进行快速的计算,最好是将复原那200亿种颜色组合的最少转动次数。后来,一位美国中佛罗里达大学(Unversity of Central Florida)的数学家里德(M.Reid)用这种方法计算发现,最多经过12次转动,就可以将魔方的任意一种颜色组合变为科先巴那200亿种组合之一;而最多经过18次转动,就可以将那200亿种组合中的任意一种复原。这表明,最多经过12+18=30次转动,就可以将魔方的任意一种颜色组合复原。

此后随着计算机技术的发展,数学家们对里德的结果又作进一步的改进,从30次减为29、27。目前为止,由研究“上帝之数”长达15年之久的计算机高手罗基奇(T.Rokicki)的方法计算,又将魔方的最少转动减少到22次转动。但这并不代表着这就是“上帝之数”的最佳结果。一切都在不断变化之中。“上帝”也许是微妙的,我们谁也无法保证它是否会在某个角落为我们留下惊讶,我们唯一有理由相信的也许是:这个游戏与数学交织而成的神秘的“上帝之数”距离它水落石出的那一天已不太遥远了。 XqXGGZV5DXCE1oEM7eB1adr1ifdpcdWEJVBjFqDD5M7hJIelPFSG60r+42jHKfaC

点击中间区域
呼出菜单
上一章
目录
下一章
×

打开