三角函数相应的映射是单值映射,对于定义域内每一个值(角),有惟一的值与它对应。反过来,对于三角函数每一个函数值却有无穷多个自变量的值(角)与它对应。就是说,确定三角函数的映射不是一一映射。因此必须限定角的取值范围来构成一一映射。当构成一一映射后,就可以把三角函数的反函数定义为反三角函数了。
反正弦函数:y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数,记为x=arc sin y;
反余弦函数:y=cosx在[0,π]上的反函数,叫做反余弦函数,记为x=arc cos y;
反正切函数:y=tgx在[-π/2,π/2]上的反函数,叫做反正切函数,记为x=arc tg y;
反余切函数:y=ctgx在[0,π]上的反函数,叫做反余切函数,记为x=arcctgy.用同样的道理可以定义反正割函数和反余割函数。反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数和反余割函数都称为反三角函数。