购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

30 如何计算1×2+2×3+3×4+……+9×10
——∑n(n+1)的计算方法

我曾观摩过高中生智力问答比赛的盛况,赛中出现了一些计算题。比如下式:

1+4+9+16+……

问:此数列(每一项都为整数的完全平方数)从第1项加到第200项的总和是多少?

10多秒钟后,心算完毕的高中生们“噢”的一声激动地喊了出来。这个问题其实并不难,只要知道公式,我们大家都可以轻松得出答案。

“1加到第n个完全平方数的总和为,n与(n+1)、(2n+1)的乘积除以6。”这个公式我们将在初中学到,需要背诵。

因此,上述智力问答题只需将n=200代入,心算200×201×401÷6即可。计算时可采用“除法即约分”的方法。将式子变形为100×67×401,“400个67是26800。加67得26867,再加两个0即得2686700”。

公式可以发挥巨大的作用,但一味套用、死记硬背也多有弊端。

理解它的推导方式能帮助我们更好地应用。

那么,这个公式是如何导出的呢?

我们以标题为例进行说明。很多人无法一下子找到解题思路,我们按如下方法来记。

①将原式转化:1×2=(1×2×3-0×1×2)÷3。

等号右侧()中1×2相同,所以()里可化为1×2×(3-0),除以3后得1×2。

②同样地,将2×3,3×4,……,进行变形:

1×2=(1×2×3-0×1×2)÷3

2×3=(2×3×4-1×2×3)÷3

3×4=(3×4×5-2×3×4)÷3

4×5=(4×5×6-3×4×5)÷3

5×6=(5×6×7-4×5×6)÷3

6×7=(6×7×8-5×6×7)÷3

7×8=(7×8×9-6×7×8)÷3

8×9=(8×9×10-7×8×9)÷3

9×10=(9×10×11-8×9×10)÷3

如上,变形完毕(为方便理解,中途没有省略步骤)。

我们能够清楚地看到,等号左侧的算式全部相加即为标题中需要求的算式。等号右侧也是一样的。

仔细看等号右侧,÷3是共通的,所以我们把它留到最后一起计算。

若将()中的所有项全部相加,大多数都会互相抵消。最后只余9×10×11-0×1×2,后者为0,所以最后只余9×10×11。

最后再计算9×10×11÷3,即得答案330。

由此我们很容易得出结论:通常在计算1×2+2×3+…+n(n+1)时,得数为n(n+1)(n+2)。

那么,若从1×2中减去1,式子就从2个1变成了1个1,即余1×1。

若从2×3中减去2,就变成了2个2,即余2×2。按照这个思路思考,我们可以得出“想要计算1×1+2×2+3×3+…+n×n时,只要计算1×2+2×3+…+n(n+1)后减去1到n的所有数的和即可”的结论。

因此只需计算n(n+1)(n+2)÷3-n(n+1)÷2,(1到n项的求和方法请参照本书第27节)即可得出例题中的超长算式,即带☆号的式子。

练习题

1×2+2×3+3×4+…+99×100=

1×3+3×5+5×7+7×9+9×11+11×13=

1×1+2×2+3×3+4×4+5×5+6×6=

1×2×3+2×3×4+3×4×5+…+98×99×100=

提示:第二题不能简单运算为11×13×15÷6,注意首项。最后一题也可以运用本节学习的内容来解,属于较难的心算题。 Z+ZxbKtsHsByUQNU3RLJQDqpPna+9Xn/X018um1jHBaRaG6btUxO7/2hyHiOw03p



31 如何将360分解质因数
——实战分解质因数

通常,在学习分解360的质因数时,我们会像右图一样,从最小的质数开始一个一个往下除,直到无法再除时得出如下答案:

2×2×2×3×3×5(=2 3 ×3 2 ×5)

这是通常的解题方法。

这种方法当然是十分正确的,但是当题目答案中只包含如2、3、5、7、11这样的较小质数时,能力稍强的学生不会采用这种一个一个去数的方法。

那么,他们是如何做的呢?

360除以5,得72。

72用九九乘法得8×9。

8为2 3 ,9为3 2 ,由此得出2 3 ×3 2 ×5。

那么,144应该如何分解呢?在这里我们介绍给大家一种常用方法。

144为12×12(计算题做多了会自然记住平方数)。

12为4×3=2 2 ×3,即相当于“由2个2和3个1组成”。

因为144中包含2组12,所以有“4个2,2个3”。即2 4 ×3 2

下面来看1080:

首先,108×10,108为(熟练后最好化为4×27)2×54。

因此,先考虑2×54×10:

2……有1个2。

54……等于6×9,所以有1个2和3个3。

10……有1个2和1个5。

总结后共有3个2、3个3、1个5,即2 3 ×3 3 ×5。

也就是说,我们可以将数字分解为2个以上数字的乘积,再逐个分解质因数,最后全部整合。

练习题

将下列数字分解质因数。

36 216 120 180

504 336 351 378 Z+ZxbKtsHsByUQNU3RLJQDqpPna+9Xn/X018um1jHBaRaG6btUxO7/2hyHiOw03p

点击中间区域
呼出菜单
上一章
目录
下一章
×