购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

1.3 深度学习的崛起之路

1.3.1 人脸识别的起源

2012年,Alex Krizhevsky等人提出了AlexNet网络结构模型,以一种结构上轻巧简单但计算量上远超传统模型的方式轻易战胜了传统的机器学习模型,并凭借它在ImageNet图像分类挑战赛上赢得了冠军。自此,在图像领域点燃了深度学习的热潮,无数公司与学者纷纷转向该领域,并在短短几年内就取得了大量的突破性进展,其中包括何凯明等人提出的残差神经网络、谷歌提出的GoogLeNet等。这些新的研究成果使得人脸识别等过去不可能实现的场景拥有了落地的可能。

1.3.2 自动驾驶的福音

巧合的是,同样在2012年,图像分割领域也通过深度学习的应用取得了历史性突破,那就是全卷积网络(FCN)的出现。在另一个图像领域的著名图像分割任务数据集VOC上,FCN刷新了该数据集的最优指标,引爆了深度学习在图像分割领域的应用。

图像分类与图像分割的突破带来了另一个行业的突破,那就是自动驾驶。早在2009年,谷歌就已经成立了负责自动驾驶业务的子公司Waymo,也是目前自动驾驶的巨头之一,其估值顶峰达到了1700多亿美元,可见自动驾驶行业在投资人心中的分量。在国外,除谷歌外,特斯拉、苹果公司等科技巨头,奥迪、德尔福、通用汽车等汽车行业巨头,Uber、Lyft等网约车领域巨头也都在做自动驾驶研究。在国内,百度、Momenta、Pony.ai、地平线、驭势科技、图森未来等公司也在这一领域不断发力。

在深度学习出现之前,自动驾驶的水平主要停留在基于毫米波雷达及其他传感器的低阶水平,这个水平的自动驾驶是不可能真正解放司机注意力的;深度学习的出现带来了图像识别与图像语义分割理解的突破,让人们看到了实现L5级别完全自动驾驶的希望,也由此引起了自动驾驶行业的爆发。

1.3.3 超越人类的AI智能体

2016年发生了另一起点燃深度学习浪潮的事件,那就是谷歌DeepMind研发的AI围棋手AlphaGo异军突起。2016年3月,AlphaGo与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4﹕1的总比分获胜;2016年年末至2017年年初,该程序以Master为注册名与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩,被称为Alpha Master;2017年5月,在中国乌镇围棋峰会上,它与当时排名世界第一的世界围棋冠军柯洁对战,以3﹕0的总比分获胜。围棋界公认AlphaGo的棋力已经超过人类职业围棋顶尖水平,在GoRatings网站公布的世界职业围棋排名中,其等级分曾超过排名人类第一的棋手柯洁。

AlphaGo的出现让人们进一步意识到了深度学习的无限可能。2019年3月,ACM正式宣布将2018年图灵奖授予Yoshua Bengio、Geoffrey Hinton和Yann LeCun,以表彰他们提出的概念和工作使得深度学习神经网络有了重大突破。这也使得人们对深度学习的热情进一步发酵,让更多的研究开始往这个领域倾斜与投入。

1.3.4 懂你的AI

近几年,深度学习领域的热门研究主要集中在以下几个方向:生成对抗网络、迁移学习、强化学习、联邦学习以及本书的主题——AutoML。其中,在算法方面,谷歌提出的注意力机制以及基于该思想衍生出的BERT模型大幅刷新了自然理解领域所有数据集的评价指标,业内对此做出这样的评价:“自然语言处理是未来深度学习领域皇冠上的明珠。”基于底层语言理解模型的突破,让机器翻译、人机对话、文本分析、AI音乐、AI写作等许多过去不可想象的任务都成为可能。

1.3.5 奔跑、飞行以及玩游戏的AI

让机器为人类服务是人类一直以来的美好梦想,随着深度学习的发展,这个梦想正在逐渐实现。过去为了要让机器具有智能,需要人为赋予其大量的逻辑判断命令;而如今伴随着图像技术的成熟以及深度强化学习的应用,机器人在路上飞速奔跑、识别并跨越障碍物,乃至花式跳舞都已经成为现实。除此之外,AI机器人还能够与玩家联机对战《星际争霸》,并且一般的职业选手都没法战胜它。另一个值得关注的是京东正在打造的无人送货机,它能够自动规划路线、躲避障碍、识别目标客户并完成货物投递,是非常值得期待的一项新型服务。

1.3.6 人人都可以创造属于自己的AI

以上的种种发展都证明了,AI是这个时代不可阻挡的一个趋势。然而就当下而言,由于AI是一个较为新潮的事物,实现起来的技术难度较大,因此在各行各业的普及难度也较大,但是能够让AI开花结果的正是非IT领域的各行各业。另外,目前拥抱AI的都是主流的大公司或者科技含量较高的创业公司,而传统的行业则缺乏相应的资源及人才。为了普及人工智能,降级人工智能的门槛,并且方便人工智能的开发,实现人人都会人工智能,自动化机器学习(AutoML)这个概念应运而生。

AutoML是一个自动模型学习的平台,其核心思想是自动化创造AI模型,把中间的复杂流程与烦琐的步骤都交给机器来自动完成,使用者只要指定输入的数据和任务类型即可。当前许多企业通过这种技术自动化生成了许多优秀的模型,例如小米公司通过神经架构搜索技术得到了最优的图像超分辨率模型,用于在手机端提升图像质量。除此之外,微软、亚马逊、谷歌、Salesforce等公司也都为顾客提供了类似的平台,使得对AI不那么熟悉的人也可以方便地应用AI技术并使其在自己的行业内落地。 CTG2IWUQQkOGbj8i+ZaK2EGpaugcakmP3Sgp96eJy8IHwvL6pRHD2EQZC2NQ1G/v

点击中间区域
呼出菜单
上一章
目录
下一章
×