Wireless networks utilize radio waves and/or microwaves to maintain communication channels between computers. Wireless networking is a more modern alternative to wired networking that relies on copper and/or fiber optic cabling between network devices.
A wireless network offers advantages and disadvantages compared to a wired network. Advantages of wireless include mobility and elimination of unsightly cables. Disadvantages of wireless include the potential for radio interference due to weather, other wireless devices, or obstructions like walls.
Wireless is rapidly gaining in popularity for both home and business networking. Wireless technology continues to improve, and the cost of wireless products continues to decrease. Popular wireless local area networking (WLAN) products conform to the 802.11 (“Wi-Fi”) standards. The gear a person needs to build wireless networks includes network adapters (NICs), access points (APs), and routers.
Most wireless networks are based on the IEEE 802.11 standards. A basic wireless network consists of multiple stations communicating with radios that broadcast in either the 2.4GHz or 5GHz band , though this varies according to the locale and is also changing to enable communication in the 2.3GHz and 4.9GHz ranges.
(2-6) 802.11 networks are organized in two ways. In infrastructure mode , one station acts as a master with all the other stations associating to it. The master station is termed an access point (AP) and all communication passes through the AP; even when one station wants to communicate with another wireless station, messages must go through the AP. In the second form of network, there is no master and stations communicate directly. This form of network is commonly known as an ad-hoc network .
802.11 networks were first deployed in the 2.4GHz band using protocols defined by the IEEE 802.11 and 802.11b standard. These specifications include the operating frequencies and the MAC layer characteristics, including framing and transmission rates , as communication can occur at various rates. Later, the 802.11a standard defined operation in the 5GHz band, including different signaling mechanisms and higher transmission rates. Still later, the 802.11g standard defined the use of 802.11a signaling and transmission mechanisms in the 2.4GHz band in such a way as to be backwards compatible with 802.11b networks.
Separate from the underlying transmission techniques, 802.11 networks have a variety of security mechanisms. The original 802.11 specifications defined a simple security protocol called WEP. This protocol uses a fixed pre-shared key and the RC4 cryptographic cipher to encode data transmitted on a network. Stations must all agree on the fixed key in order to communicate. This scheme was shown to be easily broken and is now rarely used except to discourage transient users from joining networks. Current security practice is given by the IEEE® 802.11i specification that defines new cryptographic ciphers and an additional protocol to authenticate stations to an access point and exchange keys for data communication. Cryptographic keys are periodically refreshed and there are mechanisms for detecting and countering intrusion attempts. Another security protocol specification commonly used in wireless networks is termed WPA, which was a precursor to 802.11i. WPA specifies a subset of the requirements found in 802.11i and is designed for implementation on legacy hardware. Specifically, WPA requires only the TKIP cipher that is derived from the original WEP cipher. 802.11i permits use of TKIP but also requires support for a stronger cipher, AES-CCM, for encrypting data. The AES cipher was not required in WPA because it was deemed too computationally costly to be implemented on legacy hardware.
The other standard to be aware of is 802.11e. It defines protocols for deploying multimedia applications, such as streaming video and voice over IP (VoIP), in an 802.11 network. Like 802.11i, 802.11e also has a precursor specification termed WME (later renamed WMM) that has been defined by an industry group as a subset of 802.11e that can be deployed now to enable multimedia applications while waiting for the final ratification of 802.11e. The most important thing to know about 802.11e and WME/WMM is that it enables prioritized traffic over a wireless network through Quality of Service (QoS) protocols and enhanced media access protocols. Proper implementation of these protocols enables high speed bursting of data and prioritized traffic flow .
FreeBSD supports networks that operate using 802.11a, 802.11b, and 802.11g. The WPA and 802.11i security protocols are likewise supported (in conjunction with any of 11a, 11b, and 11g) and QoS and traffic prioritization required by the WME/WMM protocols are supported for a limited set of wireless devices.
(2-7) A cellular network or mobile network is a radio network distributed over land areas called cells, each served by at least one fixed-location transceiver , known as a cell site or base station . In a cellular radio system, a land area to be supplied with radio service is divided into regular shaped cells, which can be hexagonal, square, circular or some other regular shapes, although hexagonal cells are conventional. Each of these cells is assigned multiple frequencies which have corresponding radio base stations. The group of frequencies can be reused in other cells, provided that the same frequencies are not reused in adjacent neighboring cells as that would cause co-channel interference .
The increased capacity in a cellular network, compared with a network with a single transmitter, comes from the fact that the same radio frequency can be reused in a different area for a completely different transmission. If there is a single plain transmitter, only one transmission can be used on any given frequency. Unfortunately, there is inevitably some level of interference from the signal from the other cells which use the same frequency. This means that, in a standard FDMA(Frequency Division Multiple Access) system, there must be at least a one cell gap between cells which reuse the same frequency.
In the simple case of the taxi company, each radio had a manually operated channel selector knob to tune to different frequencies. As the drivers moved around, they would change from channel to channel. The drivers knew which frequency covered approximately what area. When they did not receive a signal from the transmitter, they would try other channels until they found one that worked. The taxi drivers would only speak one at a time, when invited by the base station operator (this is, in a sense, time division multiple access (TDMA)).
A cellular network is used by the mobile phone operator to achieve both coverage and capacity for their subscribers. Large geographic areas are split into smaller cells to avoid line-of-sight signal loss and to support a large number of active phones in that area. All of the cell sites are connected to telephone exchanges (or switches), which in turn connect to the public telephone network. In cities, each cell site may have a range of up to approximately ½ mile, while in rural areas, the range could be as much as 5 miles. It is possible that in clear open areas, a user may receive signals from a cell site 25 miles away.
Since almost all mobile phones use cellular technology, including GSM, CDMA, and AMPS (analog), the term “ cell phone ” is in some regions, notably the US, used interchangeably with “ mobile phone ”. However, satellite phones are mobile phones that do not communicate directly with a ground-based cellular tower, but may do so indirectly by way of a satellite.
As the phone user moves from one cell area to another cell while a call is in progress, the mobile station will search for a new channel to attach, in order not to drop the call. Once a new channel is found, the network will command the mobile unit to switch to the new channel and at the same time switch the call onto the new channel.
With CDMA, multiple CDMA handsets share a specific radio channel. The signals are separated by using a pseudonoise code (PN code) specific to each phone. As the user moves from one cell to another, the handset sets up radio links with multiple cell sites (or sectors of the same site) simultaneously. This is known as “soft handoff” because, unlike with traditional cellular technology, there is no one defined point where the phone switches to the new cell.
If there is no ongoing communication or the communication can be interrupted, it is possible for the mobile unit to spontaneously move from one cell to another and then notify the base station with the strongest signal.
A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional , also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, air pollution monitoring, forest fire detection, natural disaster prevention, accurate agriculture , smart home monitoring, and so on.
The WSN is built of “nodes”—from a few to several hundreds or even thousands, where each node is connected to one (or sometimes several) sensors. Each such sensor network node has typically several parts: a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting . A sensor node might vary in size from that of a shoebox down to the size of a grain of dust. The cost of sensor nodes is similarly variable, ranging from a few to hundreds of dollars, depending on the complexity of the individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and communications bandwidth. The topology of the WSNs can vary from a simple star network to an advanced multi-hop wireless mesh network. The propagation technique between the hops of the network can be routing or flooding.
The main characteristics of a WSN include:
(1) Power consumption constrains for nodes using batteries or energy harvesting.
(2) Ability to cope with node failures.
(3) Mobility of nodes.
(4) Communication failures.
(5) Heterogeneity of nodes.
(6) Scalability to large scale of deployment.
(7) Ability to withstand harsh environmental conditions.
(8) Ease of use.
Sensor nodes can be imagined as small computers, extremely basic in terms of their interfaces and their components. They usually consist of a processing unit with limited computational power and limited memory, sensors or MEMS (Micro Electro-Mechanical Systems), a communication device (usually radio transceivers or alternatively optical), and a power source usually in the form of a battery. Other possible inclusions are energy harvesting modules, secondary ASIC (Application Specific Integrated Circuit), and possibly secondary communication interface (e.g. RS-232 or USB).
The base stations are one or more components of the WSN with much more computational, energy and communication resources. They act as a gateway between sensor nodes and the end user as they typically forward data from the WSN on to a server. Other special components in routing based networks are routers, designed to compute, calculate and distribute the routing tables.
Despite the innumerable applications of WSNs, these networks have several restrictions, e.g., limited energy supply, limited computing power, and limited bandwidth of the wireless links connecting sensor nodes. One of the main design goals of WSNs is to carry out data communication while trying to prolong the lifetime of the network and prevent connectivity degradation by employing aggressive energy management techniques. The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before efficient communication can be achieved in WSNs. In the following, we summarize some of the routing challenges and design issues that affect routing process in WSNs.
(1) Node deployment: Node deployment in WSNs is application dependent and affects the performance of the routing protocol. The deployment can be either deterministic or randomized. In deterministic deployment, the sensors are manually placed and data is routed through pre-determined paths. However, in random node deployment, the sensor nodes are scattered randomly creating an infrastructure in an ad hoc manner. If the resultant distribution of nodes is not uniform, optimal clustering becomes necessary to allow connectivity and enable energy efficient network operation. Inter-sensor communication is normally within short transmission ranges due to energy and bandwidth limitations. Therefore, it is most likely that a route will consist of multiple wireless hops.
(2) Energy consumption without losing accuracy: sensor nodes can use up their limited supply of energy performing computations and transmitting information in a wireless environment. As such, energy-conserving forms of communication and computation are essential. Sensor node lifetime shows a strong dependence on the battery lifetime. In a multi-hop WSN, each node plays a dual role as data sender and data router. The malfunctioning of some sensor nodes due to power failure can cause significant topological changes and might require rerouting of packets and reorganization of the network.
(3) Node/Link heterogeneity: In many studies, all sensor nodes were assumed to be homogeneous, i.e., having equal capacity in terms of computation, communication, and power. However, depending on the application, a sensor node can have different role or capability. The existence of heterogeneous set of sensors raises many technical issues related to data routing. For example, some applications might require a diverse mixture of sensors for monitoring temperature, pressure and humidity of the surrounding environment, detecting motion via acoustic signatures, and capturing the image or video tracking of moving objects. These special sensors can be either deployed independently or the different functionalities can be included in the same sensor nodes. Even data reading and reporting can be generated from these sensors at different rates, subject to diverse quality of service constraints, and can follow multiple data reporting models. For example, hierarchical protocols designate a cluster-head node different from the normal sensors. These cluster-heads can be chosen from the deployed sensors or can be more powerful than other sensor nodes in terms of energy, bandwidth, and memory. Hence, the burden of transmission to the base station is handled by the set of cluster-heads.
(4) Fault tolerance : Some sensor nodes may fail or be blocked due to lack of power, physical damage, or environmental interference. The failure of sensor nodes should not affect the overall task of the sensor network. If many nodes fail, MAC and routing protocols must accommodate formation of new links and routes to the data collection base stations. This may require actively adjusting transmit powers and signaling rates on the existing links to reduce energy consumption, or rerouting packets through regions of the network where more energy is available. Therefore, multiple levels of redundancy may be needed in a fault-tolerant sensor network.
(5) Scalability: The number of sensor nodes deployed in the sensing area may be in the order of hundreds or thousands, or more. Any routing scheme must be able to work with this huge number of sensor nodes. In addition, sensor network routing protocols should be scalable enough to respond to events in the environment. Until an event occurs, most of the sensors can remain in the sleep state, with data from the few remaining sensors providing a coarse quality.
(6) Network dynamics: Most of the network architectures assume that sensor nodes are stationary. However, mobility of either base stations or sensor nodes is sometimes necessary in many applications. Routing messages from or to moving nodes is more challenging since route stability becomes an important issue, in addition to energy, bandwidth etc. Moreover, the sensed phenomenon can be either dynamic or static depending on the application, e.g., it is dynamic in a target detection/tracking application, while it is static in forest monitoring for early fire prevention. Monitoring static events allows the network to work in a reactive mode, simply generating traffic when reporting. Dynamic events in most applications require periodic reporting and consequently generate significant traffic to be routed to the BS.
(7) Transmission Media: In a multi-hop sensor network, communicating nodes are linked by a wireless medium. The traditional problems associated with a wireless channel (e.g., fading, high error rate) may also affect the operation of the sensor network. In general, the required bandwidth of sensor data will be low, on the order of 1~100kb/s. Related to the transmission media is the design of medium access control (MAC). One approach of MAC design for sensor networks is to use TDMA based protocols that conserve more energy compared to contention based protocols like CSMA (e.g., IEEE 802.11). Bluetooth technology can also be used.
(8) Connectivity: High node density in sensor networks precludes them from being completely isolated from each other. Therefore, sensor nodes are expected to be highly connected. This, however, may not prevent the network topology from being variable and the network size from being shrinking due to sensor node failures. In addition, connectivity depends on the possibly random, distribution of nodes.
(9) Coverage: In WSNs, each sensor node obtains a certain view of the environment. A given sensor’s view of the environment is limited both in range and in accuracy; it can only cover a limited physical area of the environment. Hence, area coverage is also an important design parameter in WSNs.
(10) Data Aggregation : Since sensor nodes may generate significant redundant data, similar packets from multiple nodes can be aggregated so that the number of transmissions is reduced. Data aggregation is the combination of data from different sources according to a certain aggregation function, e.g., duplicate suppression, minima, maxima and average. This technique has been used to achieve energy efficiency and data transfer optimization in a number of routing protocols. Signal processing methods can also be used for data aggregation. In this case, it is referred to as data fusion where a node is capable of producing a more accurate output signal by using some techniques such as beamforming to combine the incoming signals and reducing the noise in these signals.
(11) Quality of Service: In some applications, data should be delivered within a certain period of time from the moment it is sensed; otherwise the data will be useless. Therefore bounded latency for data delivery is another condition for time-constrained applications. However, in many applications, conservation of energy, which is directly related to network lifetime, is considered relatively more important than the quality of data sent. As the energy gets depleted, the network may be required to reduce the quality of the results in order to reduce the energy dissipation in the nodes and hence lengthen the total network lifetime. Hence, energy-aware routing protocols are required to capture this requirement.