购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

六、海洋和陆地水

地球上的水与水循环

地球上水的分布

地球上的水除了海洋、河流、湖泊、地下水、大气水、冰雪水外,还有各种矿物中的化合水、结合水,以及岩石圈深部封存的水分,它们共同构成了地球的水圈。其中海水是地球水量的主体,占总水量的97%以上。陆地水虽然含量较少,但对自然地理环境有重要作用。

地球的总水量计算有是不同种类的估算法。1970年,国际水文学会公布地球总水量的体积接近1.5亿立方千米,并将各类水量在地球表面的平均深度定义为当量深度。据估计,海水的当量深度大约为2700~2800米,冰雪的约为50米,地下水约为15米,陆地水约为0.4~1米,大气中平均水汽含量的当量深度约为0.03米。国际水文学会公布的数据显示海水总量是1.35亿立方千米,大气水分总量1.3万立方千米,河流、湖泊、湿地的含水总量是20.7万立方千米,地下水总量是8.2立方千米。

但比较流行的是日本学者提出的一组数据:河流水总量为1250立方千米;淡水湖为12.5万立方千米;地下水为135万立方千米;土壤和渗流水为6.7立方千米;盐湖和内陆海为10.4万立方千米;冰盖和冰川2920万立方千米;大气水分为1.3万立方千米;海洋为1.37亿立方千米。

陆地水

陆地水是陆地上水体的总称,它一般是指存在于河流、湖泊、冰川沼泽和地下的水体。地球上的陆地水大约有5.597万立方千米,约占地球表面总水量的3.5%,其中咸水约占1%,剩下的2.5%是淡水,它是人们进行生产、生活的基本保障。

陆地水是人类生存用水的最主要来源,它对气候及其他自然生态系统有重要的影响。除此之外,它还蕴含着丰富的自然资源,对于人类的生产和生活具有重要的意义。

陆地水通常可分为地表水和地下水,地表水指的是存在于地表之上的水,主要有河流、湖泊、冰川等。地下水埋藏在地表之下,储存在岩石和土壤以及植物的根系之中。

水循环

地球上的水资源,在太阳辐射和重力作用下,以气态、液态和固态等形式,以蒸发、降水和径流等方式进行着周而复始的循环运动。水循环的根本原因来自于水的固态、液态、气态可以转化的特性,而太阳辐射和地球吸引力则是它的外因。

水循环是地理环境中最重要、最活跃的物质循环之一。首先它维持着地球水体之间的平衡,使得淡水资源能够得到不断更新。其次,水循环促进了自然界物质和能量的交换,对气候、生态和地貌等都产生了较深刻的影响。同时也将水圈和岩石圈、大气圈、生物圈联系在了一起,使地球外部圈层形成了统一的整体。

水循环通常可以分为四个环节:太阳辐射使得液态的水从地表或海洋中蒸发,蒸发的水汽成为大气的一部分;水汽随着气流从一个地区被送到另一个地区,或者是从海拔较低的地区送到较高的地区;悬浮的水汽在一定的条件下凝结,在重力作用下形成降水;降水在降落的过程中除一部分蒸发返回大气外,剩余的会被植物截留、下渗或者是暂时储存在地表,经过地表径流、地下径流等,最终进入江河湖海中。

水循环示意图

水循环按规模可分为水分大循环和水分小循环两大类。水分大循环指的是海陆间循环,规模比较大;水分小循环又可分为海上内循环和内陆循环两个局部的水循环过程。

地球上每年参加水循环的总水量约有5000立方千米,而对流层中的水分总量约为12.9万立方千米,这些水分通过蒸发和降水平均每年更换约45次,即更新期在8天左右。河川径流的更新期约16天;沼泽和湖泊的循环更新期较长,分别为5年和17年;深层地下水、海洋和极地冰川的循环更新时间更长。

水量平衡

按质量守恒定律,全球或任一区域的水量都是收支平衡的。降水、蒸发、径流是水循环的三个重要环节,因此水量平衡的三个重要因素就是降水量、蒸发量、径流量。全球水量平衡的公式可写成:大陆降水量+海洋降水量=大陆蒸发量+海洋蒸发量。也就是说全球降水量等于蒸发量。此外,还有公式表明大洋年降水量与入海径流量之和是大洋年蒸发量,这也说明人为大规模地减少入海径流量,很可能会破坏淡水平衡。

从20世纪初开始,许多学者对全球水量平衡进行研究,但各学者估算的结果都有很大差异。J.R.梅特于1970年估算的数据被广泛使用,从该数据可看出:海陆蒸发量和降水量基本平衡;海洋蒸发是大气水分和陆地水的主要来源,陆地蒸发对降水的作用小;海洋蒸发量大于降水量,陆地蒸发量小于降水量。

从全球范围来看,赤道地区的水分过剩(水量平衡的水平高),南北纬10°~40°的蒸发量大于降水量,南北纬40°~90°的降水量大于蒸发量。

水资源时空分布不均

地球上的水量非常丰富,总储水量约13.86亿立方千米。有96.54%的水储存在低洼的海洋中,而这部分水的97.47%是分布在咸水海洋、地下和湖泊中的咸水,淡水仅占总水量的2.53%,主要分布于冰川、永久积雪和地下,其中永久积雪中的淡水量最大。

除南极洲外,水资源在各大洲的分布,从年径流量看,亚洲最多,其他依次是南美洲、北美洲、非洲、欧洲、大洋洲;从人均径流量来看,大洋洲最多,其他依次是南美洲、北美洲、非洲、欧洲、亚洲。

而从时间上看,世界的水资源还受季节的影响,某一地区在降水丰富的季节,水资源会相应地增多,反之亦然。

跨流域调水

跨流域调水是跨越两个或两个以上流域的引水或调水工程,是把水资源较丰富流域的水调到水资源紧缺的流域,调剂各地区间的水量盈亏。这是解决缺水地区水资源需求的重要措施之一。世界最早的跨流域调水工程是我国的京杭大运河。跨流域调水涉及到水资源的重新分配,需要全面分析跨流域的水量平衡关系,协调各地区间可能产生的矛盾。

据统计,目前世界上的调水工程有160余项,主要分布在24个国家。世界各大江河几乎都存在调水工程。世界著名的调水工程有:美国的中央河谷、加州调水、科罗拉多水道和洛杉矶水道等远距离调水工程;澳大利亚的雪山工程;巴基斯坦的西水东调工程等。俄罗斯的调水工程更是世界著名,前苏联时期的大型调水工程就有15项之多。

水是重要的自然地理要素之一,跨流域调水势必会引起周边地理生态环境的变化。这种变化可分为两方面,一方面可增加灌溉面积,提高粮食产量,改善缺水区的水质和自然环境,还可促进航运,提供水电;另一方面却会产生淹没土地、引发疾病的后果,还会导致下游水质和沿岸环境变差,甚至还会间接影响到渔业的发展。

水资源危机

水资源危机产生的原因主要有:

用水量急剧增加,尤其是城市人口用水量的增加。水资源紧缺主要是由人类生产和生活用水引发的。人口城市化更是加剧了水资源的紧缺。

水质污染和用水浪费。在人口用水、工农业用水增加的同时,排放的废水对淡水资源又造成了污染,降低了淡水水质。另外,城市供水系统渗漏、工业用水重复率低、农业灌溉利用率低使水资源浪费严重,加剧了水资源的短缺。

森林植被减少。世界各地都存在着乱砍滥伐的现象,使森林植被的覆盖率在急剧下降,这降低了森林对水源的涵养能力,加重了水旱灾害,对水资源和环境极为不利。

水资源危机表现在以下方面:生活、生产用水严重短缺;某些地区的人们不能喝上干净的淡水;水资源的生态平衡遭到严重破坏;部分水生生物大量死亡,甚至灭绝,而部分有害生物却大量繁殖,如赤潮。

应对水资源危机要多种措施并行,要加大宣传对水资源的保护,提倡合理利用水资源,使人们真正行动起来,采取一些行之有效的节水、护水措施,如植树造林。另外,应对水资源危机还需要世界各国在河流、湖泊和地下水方面共同管理,不能实施分割管理。

世界水日和中国水周

水是人类社会赖以生存的基础,一切社会经济活动都离不开水的供应。但随着人口的增长和经济的发展,世界许多国家都陷入了淡水资源缺乏的困境,这限制了经济的发展,影响了人口的身体素质。水资源的保护日益受到国际社会的关注。在这样的背景下,1993年1月18日,第47届联合国大会作出决议,将每年的3月22日确定为“世界水日”。决议提请各国政府要根据自己的国情,在这一天开展一些具体的宣传活动,以提高公众保护水资源的意识。从1993年开始,每年的世界水日都有一个主题。2010年世界水日的主题是“关注水质、抓住机遇、应对挑战”。

中国人口众多,是一个用水大国,政府很早就已经意识到宣传保护水资源意识的重要性。1988年《中华人民共和国水法》颁布后,水利部将每年的7月1日至7日定为“中国水周”。1993年联合国确定世界水日后,中国政府考虑到世界水日与中国水周的主旨和内容基本相同,从1994年开始,将“中国水周”的时间改为每年的3月22日至28日。中国水周与世界水日重合更加突出各种保护水资源宣传活动的重要性。

海洋起源与海水的性质

海洋的起源

大洋化过程是地壳变薄、洋盆形成和海水聚集的过程。要认识海洋的起源,就必须要了解大洋化过程。

地壳是大洋化的主要场所,有关地壳大洋化有两种机理。一种机理是说,古地台地壳(地壳)下界的莫霍面附近温度一般高达500℃,水不断从地壳向上喷出,含水超基性岩发生脱蛇纹石化过程,地壳逐渐被改造成深水盆地薄洋壳。另一种机理是说,大洋化地区原本温度较高,发生脱花岗岩现象,花岗岩质成分被带走,地壳逐渐变薄成洋壳。由此可知,地壳大洋化的过程离不开较高的温度和热量。

除了大洋化过程,海洋起源的假说还有许多种。有的假说认为,洋壳是泛大陆分离时海底扩张而成的。也有的假说认为洋壳是原生的,地球诞生初期大洋就已经存在了。较为让人接受的假说是,洋壳因岩浆侵入地壳并溢出地表冷凝,导致下伏地壳沉入上地幔而形成。

世界上共有四大洋,包括太平洋、大西洋、印度洋和北冰洋。

太平洋

太平洋是世界第一大洋,它位于亚洲、大洋洲、南美洲、北美洲和南极洲之间,北部经白令海峡和北冰洋连接在一起,东部经巴拿马运河和大西洋连在一起,西部和印度洋相通,总面积约为1.8亿平方千米,占地球表面积的1/3以上,比七大洲的总面积还大。洋中超过1万米的海沟共有6条,其中最深的是马里亚纳海沟,深度为11034米,是世界海洋最深点。

太平洋中岛屿众多,共有大小1万多个岛屿,是世界大洋中岛屿最多的,而且大陆岛、珊瑚岛、火山岛等应有尽有。太平洋海底地形比较复杂,有长达1万多千米的中太平洋山脉和北太平洋、南太平洋、中太平洋、东太平洋海盆。

大气环流和太阳辐射是决定太平洋区域气候的主导因素。除此之外,亚洲大陆和洋流也是重要的影响因素。赤道附近的太平洋终年高温,年平均气温在26℃以上,多降水,年降水量一般在2000毫米以上。南北纬30°~35°之间的太平洋,降水稀少,蒸发旺盛,是太平洋上盐度最高的海域。北纬60°附近的太平洋为副极地低压带,季风作用很明显。太平洋的水温很高,海水表层的平均水温达到19℃,比印度洋和大西洋的水温高。

麦哲伦环球航行时将这个大洋命名为“太平洋”,其实,它并不太平,台风经常在海面上兴起,猛浪肆虐。太平洋中火山、地震也十分频繁,全球60%的活火山和80%的地震都集中在这里。

大西洋

大西洋是世界第二大洋,它位于欧洲、非洲、南北美洲和南极洲之间,北连北冰洋、南连南极洲、东经苏伊士运河与印度洋连在一起,西经巴拿马运河和太平洋相通,总面积约为9336万平方千米,平均深度约为3626米,最深处的波多黎各海沟深约9218米。

大西洋水面呈“S”状,海底中部有一条长约1.7万千米的大西洋海岭,海岭宽约1500~2000米,总面积约为2228万平方千米,约占大西洋总面积的1/4左右。大西洋中的岛屿主要集中在加勒比海的西北部,比太平洋要少得多。大西洋南部的海岸线比较平直,北部的海岸线曲折,形成众多的内海、海湾、海峡。

大西洋呈南北方向延伸,赤道纵贯中部,气候带比较齐全,气候南北对称。由于受洋流、海陆轮廓及大气环流的影响,所以各海区的气候又有差别。大西洋赤道地区海域气温最高,年平均气温为25~26℃,其他海区,气温由低纬向高纬地区递减。大西洋上有规律性的洋流系统,其中墨西哥湾暖流是世界上最大的暖流。

印度洋

印度洋是世界第三大洋,位于亚洲、非洲、大洋洲和南极洲之间,西南以通过非洲南端的厄加勒斯角的东经20°经线与大西洋为界,东南部以通过塔斯马尼亚岛东南角到南极大陆的东经146°51′经线与太平洋为界,北部呈封闭状态,南部敞开。印度洋总面积约有7617.4万平方千米,平均深度为3711米,最深处可达7450千米。

与澳大利亚、非洲和南极洲大陆部分毗邻的印度洋部分,半岛和岛屿很少,边缘海、内海和海湾也比较少,海岸线比较平直。与亚洲大陆南部毗邻的部分,有众多的半岛和岛屿穿插在其中,形成了众多的边缘海、内海和海峡、海湾,海岸线比较曲折。

印度洋底中部有一条“人”字形海岭,“人”字形海岭将印度洋分为东、西、南三大海域。印度洋的大陆架比较窄,总面积约为436万平方千米。

印度洋纬度较低,基本位于热带和亚热带范围之内,具有热带海洋性气候的特征。北部海区离大陆较近,形成了显著的热带季风气候。在南纬10°以南的中南海区,常年受印度洋副热带高压的影响,大气环流较稳定。印度洋中低纬度海域的气温较高,气温随纬度的增高而递减。赤道附近的降水量十分丰沛,年降水量约为2000~3000毫米。

印度洋北部受季风影响形成了洋流,洋流可分为三大系统,即季风暖流系统、南赤道暖流系统、西风漂流系统。印度洋的水温随着各海域的位置和水文特点的不同而不同,表层海水的盐度和各水域的水平平衡特点和大陆径流的分布有关。

北冰洋

北冰洋是世界四大洋中最小的一个洋,它位于欧洲、北美大陆和格陵兰岛之间,平均深度为1225米,最大深度为5527米,总面积约1475万平方千米,约占世界海洋总面积的4.1%。

北冰洋被陆地包围,呈半封闭状态,按自然地理特点可分为北欧海域和北极海域两大部分。北冰洋在亚欧大陆沿岸地区有宽广的大陆架,洋底有许多海岭和海底隆起地貌,它们和海盆、海谷交错分布着。北冰洋洋底的中央部分横卧着一条罗蒙诺索夫海岭;还有一条和罗蒙诺索夫海岭相平行的门捷列夫海岭;据调查,北冰洋中还存在着一条大洋中脊,被人称为南森海岭或者是加克利海岭。这三条海岭将北冰洋洋底分隔成许多盆地。

北冰洋大部分位于北极圈内,气候寒冷,太阳辐射较少。11月到次年4月为冬半年,绝大多数海域的平均气温为-40~-20℃。北冰洋没有所谓的夏季,即使在每年最高温的7~8月份,平均气温也仅仅只有0~6℃。北冰洋的降水量和蒸发量都不大,降水形式主要以飘雪为主,年降水量北极海域约为75~150毫米,北欧海域约为250~300毫米。

海及其分类

因接近或深入大陆,大洋的边缘或多或少会出现与大洋主体相分离的部分,被称为海。陆地、岛屿与大洋的分离是海存在的条件,海是洋的一部分,但面积和深度要远远小于洋。国际水道测量局统计的结果显示,包括某些海中海在内,各大洋中共有54个海。

海的物理化学特性、生物发育状况都有别于洋,这是因为海有大量的河水注入。海没有像洋那样显著的垂直分层,本身也没有独立的洋流系统和潮汐。

按海与洋的分离特征和其他的一些地理指标,海可以分成四种类型。内海,也叫地中海,四周几乎全被大陆包围,只有通过海峡与相邻的海、洋相通。世界上的内海有地中海、红海、波罗的海等。边缘海位于大陆的边缘,半岛或岛屿将其与大洋隔离,如白令海、黄海、东海等。外海也位于大陆的边缘,但与大洋有广阔的联系,如阿拉伯海、巴伦支海等。岛间海是由大洋中多个岛屿环绕而成的,主要有爪哇海、威西海等。

海水的化学成分

海水中含有大量溶解固体和气体,如水、氧、二氧化碳以及其他物质等,也有少量的有机和无机悬浮固体物质和天然元素。氢和氧是海水中最主要的化学成分。二氧化碳等溶解气体主要分布在海水上层的光亮带,并在此接近饱和程度。海水的天然元素约有80种,按含量来说,每升海水中含100毫克以上的元素称为常量元素,不足100毫克的称为微量元素。主要常量元素有Cl、Na、Mg、S、Ca、K,主要的微量元素有Li、I、U等。

海水的盐度

几十亿年以来,来自大陆的大量化学物质溶解到了海水当中。据不完全统计,如果全部的海水都蒸发干以后,那么剩下来的盐将会覆盖整个地球厚达70米。

通常人们用盐度来表示海水中化学物质的多寡。海水盐度指的是海水含盐量的一个标度,它是海水的重要特性之一,通常情况下是指1000克海水与它所含的全部固体溶解物质的比,通常用‰来表示。世界上盐度最高的海是红海,它北部海区的含盐度高达4.1%~4.2%;盐度最低的海是波罗的海,它的平均盐度仅仅为0.7%~0.8%。

海水盐度的分布和变化主要和海区的盐量平衡有关,而对于外海或者是大洋来讲,影响盐度的因素主要有蒸发、降水、环流,水团等。在近海岸地区除了上述因素外,河川的径流也是影响盐度的一个重要因素。地球大洋表面的海水盐度呈马鞍状分布:赤道地区的盐度较低,南北回归线附近的盐度较高;在中纬度海区,盐度会随着纬度的升高而降低,到了高纬度海区,盐度达到最低。形成这种分布状况的最根本原因是赤道地区的降水量大于蒸发量;而高纬度地区的蒸发量又有所减小,降水量又有所增加,再加上消融冰雪的影响,所以高纬度海区的盐度就降得更低。寒流和暖流对海水盐度的影响也较大,一般寒流经过的地区盐度比较低,而暖流经过的地区盐度比较高。

海水的温度

海水温度是反映海水冷热状况的一个物理量,是表示海水理化特性最重要、最基本的要素。海水温度的变化主要取决于太阳辐射的强弱,由此可以得知,低纬度地区的海水温度较高,高纬度地区的海水温度较低,有时,二者的海水温差可以达到30℃。其次,海水的温度还受到洋流和盛行风向的影响。一般情况下,水温还会随着深度的增加而降低,在深度为1000米处的水温大约为4~5℃,2000米处为2~3℃,3000米处约为1~2℃。全球海洋的平均气温约为3.5℃。

海水的温度还有年、月、日以及多年的周期性和不规则变化,通常人们将它作为研究水团性质,鉴别洋流的最基本的指标。

一般情况下,大洋表层温度日变化较小,一般都不会超过0.4℃,而浅海区的海水表层温度变化较大,有时可以达到3~4℃以上。海水表层温度日变化的最高值和最低值所出现的时间和太阳辐射的强弱有直接的关系。通常每天中午12点左右的时候是太阳辐射最强的时候,而海水的最高温度一般会在下午2点左右出现;夜间的时候,海水的温度就会降低,直到凌晨4点左右,海水的温度下降到全天的最低点。为什么海水温度的变化总是落后于太阳辐射的变化呢?这是因为海水升温和降温是非常缓慢的一个过程,需要较长的时间。

除北冰洋外,其他三大洋表层海水的年平均气温为17.4℃。其中太平洋最高,可以达到19.1℃;印度洋居于第二位,可达17℃;大西洋最低,仅为16.9℃。

海水的密度、颜色和透明度

海水的密度指单位体积海水的质量,海水密度值约为1.022~1.028。当海水的温度升高或盐度增大时,密度就会增大。淡水的密度在4℃时最大,而海水达最大密度时的温度受盐度的影响,盐度增加时,温度会降低,结冰温度也会降低。经测量,当海水盐度为24.7‰时,海水达最大密度时的温度和结冰温度都是-1.332℃,而通常情况下海水盐度为34.6‰,因此达最大密度时的温度要低于结冰温度。

海水对阳光的吸收和反射情况决定了海水的颜色。深20米以内的海水可以吸收阳光中的红光、紫光和橙光,1000米以下的海水可以吸收绿光、黄光和极少量的蓝光。除受深度的影响,进入海水的光线还受悬浮微粒和水分子的散射,最终只剩下蓝光,因此海水呈现蓝色。大陆沿岸的海水多呈绿色、黄色和棕色,部分原因是河水带来了丰富的浮游生物和泥沙,浮游生物可吸收和反射阳光。

通常用直径为30厘米的白圆盘投入海水来测量海水的透明度。海水的透明度受海水的颜色、悬浮物质、浮游生物、入海径流,甚至是天空云量的影响。一般越靠近大陆的海水,透明度越低,越靠近大洋中部的海水,透明度越高。地球上大西洋中部的海水颜色最蓝,透明度也最高。

海水运动

海水运动的形式

海水是一种流体,它永远处于不停的运动状态之中。海水运动使得海洋之中物质和能量的循环频率加快,具有重要的意义。海水运动除了能使得海洋中的物质和能量循环速度加快之外,还是塑造海岸地形的重要因素,它引起了海岸线的变迁,影响着海洋中沉积物搬运和沉积作用的进行。

海水的运动形式多种多样,一般都将它分为简单的三种类型,即波浪、潮汐和洋流。

波浪指的是在风力的作用下,海面波状起伏的海水运动形态。波浪的大小与风速有直接的关系,风速越大则波浪越大,它所释放出来的能量也就越大。风浪是最常见的一种波浪。而海啸则是最大的波浪,通常它是由海底地震、火山爆发或者是大的风暴引起的,它能够将沿海的建筑毁灭,能将村镇夷为平地,破坏力极其巨大。

潮汐是在月亮、太阳等天体引力作用下,形成的海水周期性潮涨潮落现象。通常人们在一天中可以观察到两次海水的涨落,人们将白天的海水涨落称作是潮,将夜晚的海水涨落称作为汐。潮水能够淹没潮间地带,使海底的泥沙发生迁移,所以,航海或者是建设海岸工程的时候,都要考虑潮汐的影响,掌握潮汐的特性。

洋流指的是常年比较稳定地沿着一定方向作大规模流动的海水运动形态。通常人们将洋流分为三种形式,即风海流、密度流和补偿流。洋流的规模特别巨大,如墨西哥湾暖流的流量相当于世界陆地径流总量的20多倍。一般表层的洋流平均流速为1米/秒,越向深处流速越小,到海下180米深处,几乎已经没有表层洋流的迹象。

每24小时会发生两次潮起潮落。当太阳和月

墨西哥湾暖流

墨西哥湾处于热带和亚热带气候区,这里的地形相对比较封闭,几乎与外界隔绝。南北赤道暖流在墨西哥湾中汇集,绕海湾一大圈,形成了墨西哥湾暖流。墨西哥湾暖流从佛罗里达海峡进入到大西洋,随后沿着北美洲的东海岸向北流去,一直到纽芬兰岛附近,然后向东横穿大西洋直达欧洲西海岸。到欧洲西海岸以后,这股洋流分成了两支,向北的一支为北大西洋暖流,它一直远征到北冰洋的巴伦支海,向南的一支为加那利寒流,最终又回到了赤道的附近。

墨西哥湾暖流的规模十分巨大,宽约为100多千米,深约为700米,总流量达7400万~9300万立方米/秒,流动速度最快的时候为9.5千米/小时,200米深处流动的速度为4千米/小时。墨西哥湾暖流的总流量大约相当于所有河流径流量的40倍之多。

墨西哥湾的水温非常高,特别是冬季的时候,这里的水温比周围的海水高出了8℃。暖流刚出海湾时,温度高达27~28℃,它所散发出来的热量相当于大西洋所获得的太阳光热的1/5。墨西哥湾暖流就像是一条“暖水输送带”一样,日夜不停地向它所经过的地区输送着暖气,并且借助西风,将自身的热量传送到了北欧和西欧的一些沿海地区,使那里成为温暖湿润的海洋性气候区。

北大西洋暖流

北大西洋暖流又名为北大西洋西风漂流,它是墨西哥湾暖流的延续,是大西洋北部势力最强的暖流。北大西洋暖流源于纽芬兰浅滩的外部边缘,在北纬50°、西经20°附近分成了三支。支流的主干经挪威海进入到北冰洋之中,它的流速由南部向东北部逐渐递减;南部支流沿着比斯开湾、伊比利亚半岛的外部边缘向南进发;北部支流向西北流到了冰岛以南。

因北大西洋暖流是墨西哥湾暖流的延续部分,所以它的流量随着墨西哥湾暖流的强弱变化而变化,它的流量约为2000万~4000万立方米/秒。这一暖流对西北欧的气候有着重大的影响,它为西北欧带去丰沛水汽的同时,也送去了温暖。在它的影响下,东北欧的沿岸地区形成了典型的海洋性气候,1月份的平均气温要比同纬度地区的亚洲和北美洲的东海岸高出约15~20℃。北大西洋暖流不仅对西北欧和东北欧的气候有重大的影响,在盛行西风的作用下,它还深入到北极圈内,使得北极圈内沿岸的海水终年不冻,船只全年都可以通航。

西风漂流

在强劲的盛行西风作用下,海水自西向东不断流动所形成的洋流称为西风漂流。由于南纬40°左右是一片开阔的海洋,以致各大洋中的西风漂流能够连为一体,形成了势力强大的全球性西风漂流。

在北半球,西风漂流是日本暖流和墨西哥湾暖流的延续,它们被分别称为“北太平洋暖流”和“北大西洋暖流”。北大西洋暖流对西北欧的气候有重要影响,它所流经的地区,气温和水汽的含量比周围的海区都高,并在强劲的西风作用下,往往可以深入到西北欧大陆内部,为那里带来丰沛的降水。

在南半球,各大洋的西风漂流都连在一起,形成了横亘于大西洋、印度洋和太平洋之中的全球性环流。但是这个全球性环流却是寒流,主要的原因有三方面:一,南半球的西风漂流是环绕南极大陆流动的,而南极大陆又是一个终年被冰雪覆盖着的大陆,所以气温非常低,这必然又会影响其周围水域的温度;二,从南极大陆伸出来的冰舌,进入海面以后形成了漂浮的冰山,这些漂浮的冰山在融化的时候能够吸收大量的热量,从而使海水温度降低;三,从南极大陆上吹来的强劲而干冷的极地东风也加剧了海水的降温。

大洋水团及其环流

大洋水团是大洋中具有特别温度和盐度,且性质相同的大团水体。两种不同温度和盐度的水团可结合成密度相同的水团,密度相同的两种水团可结合成密度更大的新水团。按深度划分,水团主要有四种:表层水团,深度约100米;中心水团,深度可达主要变温层底部;中层水团,从中心水团开始至3000米;深层与底层水团则充满大洋盆。南极大陆附近的海域受低温的影响,密度较高,海水不断下沉,并沿洋底逐渐流向赤道,甚至远及40°N,这一水团被称为南极底层水团,此水团在环南极大陆东流时,还与一些水团混合成环南极水团。同时还不断为印度洋和南太平洋提供深层水团。

北大西洋深层和底层水团在南极底层水团之上,流向南大西洋,一直延续至60°S。南极中层水团会发生季节性下沉,于是在60°S附近形成了南极辐合区。这样类似的辐合区,除北大西洋和北太平洋不太确定之外,几乎在所有的经度上都存在。南、北大西洋的中心水团分别在南、北亚热带形成辐合区。

与大西洋相比,太平洋的深层水团流动比较缓慢,整个太平洋的中层水团与中心水团不易区分,各辐合区不连续,位置也不确定。值得一提的是,几个来自远距离的水团在赤道上形成了太平洋赤道水团。

印度洋北部没有深层水团,但南部有范围较清晰的水团。赤道上的浅层水团不是很清晰。

海平面变化

7万年来的海平面变化

全球范围内发现的贝壳堤、牡蛎堤、海滩岩以及钻孔剖面中的沉积物和生物遗迹,都有力地证明了某段地质历史时期的海平面曾远高于现代海平面。而埋藏在海中的贝壳堤、河口三角洲、外陆架等又证明海平面曾有低于现代海平面的现象。

有人认为,是冰期的冰盖和冰川向外延伸,导致全球范围的水循环发生剧变,导致海平面降低的。据估计,末次冰期的海平面比现在低155米。间冰期的冰盖和冰川大量融化,海平面迅速上升。末次冰期开始之前的海平面就比现在的高10米,大暖期的海平面更高。经研究,渤海西海岸7万年前比现在平均偏西200千米,而4.4万年前,海岸线则向东推进了约4个经度。2.5万年前,海平面再次上升,渤海岸再次西进。

冰后期海平面变动的浮动明显减小。距今8000~7500年前的海平面接近现代。距今6500~6000年前,渤海出现了最高海面,并延续了1500年左右,渤海西部淹没的陆地比现在多2.7万平方千米。之后全球进入大暖期,海平面的变化趋于平缓。

近几十年的海平面变化

20世纪全球变暖,加上工业的发展和人口的增加使空气中二氧化碳的浓度增加,形成温室效应,导致冰川融化、海洋热膨胀,全球海平面处于上升的趋势,许多沿海地区正面临着被淹没的危险。一些学者对海平面上升的速率进行了观测和估算,但结果差异非常明显,这主要是受验潮站分布不均、各地区构造不同、记录时间长短不同、研究方法不同等因素的影响。1987、1988、1989、1990、1991年各自的文献、资料、数据显示海平面上升的速率值分别是1.2±0.3、1.15、2.4±0.9、7±0.13、1.8±0.1毫米/年。

专家们对全球海平面的上升因素的估计相差很大,尤其是南极冰盖在海平面上升中的作用。

我国海平面上升的速率远远大于全球的平均值1.8毫米/年,是2.5毫米/年。就全国平均值来说,东海上升的速率高于平均值,黄海与其基本持平,渤海和南海稍低。与2003年相比,2004~2006年我国海域海平面处于起伏上升状态。

21世纪的海平面上升预测

政府间气候变化委员会预测,如果二氧化碳按目前的趋势排放,不受限制,21世纪的海平面上升速度将是20世纪的3~5倍。但如果采取某些措施,如低碳燃烧、发展核能等,将二氧化碳排放量降至1985年的一半,则到2050年海平面则上升20~31厘米。

据1992年政府间气候变化委员会的温室气体排放方案,一批欧洲学者与中国学者合作,在1992年估算2050年海平面将上升22厘米,2100年为48厘米。

依据到2050全球海平面上升20~30厘米的估算,1993年中国科学院地学部的学者,考虑到各地区地面的下沉幅度,预计我国珠江三角洲海面至2050年上升40~60厘米,天津附近海区上升70~100厘米,上海附近海区上升50~70厘米。

海平面上升会对沿海地区带来较多的危害,如风暴灾害、潮滩湿地受损、海水侵入河口等,应引起全球的高度重视。

河流

河流、水系和流域

河流是因降水或地下水涌出,而在地面低洼处形成的线型的、自动流动的水体。根据地理地质特征,一条河流常常分为河源、上游、中游、下游和河口。河源是整条河流地势最高的地方,与冰川、高原湖泊等相联系的可能性比较大。河水的流速上流最大,下游最小。河口是河流入海、入湖之处,经常有泥沙堆积,形成三角洲。

水系是一条河流流经的区域内,通常会有数量不等的支流,与干流形成一个网络系统。水系的形式一般有树枝状、格状和长方形三类。树枝状水系一般发育在抗侵蚀能力不强的沉积岩和变质岩区;格状水系一般形成在岩层软硬相间、地下水源较丰富的平行褶皱构造区;长方形水系通常会与巨大的断裂构造联系。按干支流的相对位置关系或它们构造的几何形态,可以将水系形式化为扇形水系、羽状水系、梳状水系、平衡水系。

流域就是河流和水系在地表获得补给的集水区域。河流和水系的地面集水区和地下集水区并不重合。地下集水区很难直接测定,在分析流域特征,进行水文计算时,往往用地面集水区来代表流域。流域面积是流域的重要特征。河流水量的大小和流域面积的大小有直接关系,除干旱地区外,通常是流域面积越大,河流水量也越大。此外,流域的形状、高度、方向等对河流都有不同方面的影响。如狭长型流域的洪峰不集中,北半球流域向南冰雪消融得较快,流域高度的降水时间影响水情等。

水情要素

水情要素包括水位、流速、流量、水温四个方面。

水位是河流某一标准基面或测站基面上的水面高度。水位受多种因素的影响,包括流域内径流补给、河床的高地、河坝的建立、水草或冰情等方面。而各因素又具有不同的变化周期,因此水位的研究非常复杂。河流的水位有年变化和季节变化。

流速指水质点在单位时间内移动的距离,一般以每秒计算。其大小取决于纵比降方向上水体重力的分力以及河岸和河底对水流的摩擦力之比。河流流速的分布很不一致。一般来说,河底与河岸附近河水的流速最小,河流水深的1/10~3/10处流速较大,平均流速与水深6/10处的流速基本相等。

流量是指单位时间内通过某过水断面的水量,主要测量出流速和横断面积,就能知道河水的流量。流量是河流的重要特征值之一,流量的变化将会引起其他特征值的变化,如水位的变化。

河水温度受多种因素的影响。冰川和积雪融水补给的河流,水温一般较低,而地下水和降水补给的河流水温则较高。按季节来说,夏季的水温高,冬季的水温低,但夏季水温的日变化较大。如果一条河流的流程较近,那么水温与补给水源的温度就较接近;相反,两种温度的差别就较远。河流水温还受河流流向的影响,在北半球向北流向的河流一般下游的温度较低。

河流的补给和分类

河流补给的形式主要有降水、冰川积雪融水、地下水、湖泊、沼泽以及人工等形式。但不同河流的补给形式不同,同一条河流在不同季节的补给形式也不一样。河流补给形式的差别主要由流域内的气候条件和下垫面的特征决定。

降水是热带地区的主要补给形式;寒带地区冬季漫长,冰雪融化是主要的补给水源;下切较深的河流,地下水的补给占主要比例,较浅的河流几乎不受地下水的补给;发源于湖泊、沼泽、巨大冰川的河流补给形式主要是发源地的水源。另外,通过人工补给的一些措施,也可给河流补给水源。

河流分类的原则主要包括气候条件、径流的水源和最大径流、径流年内分配的均匀程度、径流的季节变化、河槽的稳定性等。也可根据河流与流域内的气候、地貌、水源、水量、河床等综合因素来划分河流的种类。河流分类的原则大多具有一定的局限性,同时也有一定的应用价值,在进行河流分类时,可区别对待。

径流

径流指的是大气降水到达地面以后,沿着地面的斜坡或者是地下水面流动的水流。在习惯上,人们将径流在一定时间内通过河流某一断面的水量称为径流量。径流量的单位是立方米或立方千米。

径流是地球表面水循环的过程中重要的环节,它的物理和化学作用对生态系统和地理环境有着重要的影响。人类可以通过人工降雨、融化冰雪的形式来调节径流量的时空差异,同时还可以通过种植植物、修梯田等方式来调节径流的变化,通过修筑水库等工程来改变径流的时空分布。

按照形成和流经路径可将径流分为:形成于地面之上,沿地表流动的地表径流;在土壤中形成,并沿土壤层流动的地下径流;汇入河川以后,向出口处汇集的河川径流。按降水的形态也可将径流分为降雨径流和融雪径流。广义上讲,还可以将径流分为固体径流和化学径流。

径流的形成是一个从降水到水流汇集至流域出口断面的过程,其中降雨径流的形成过程包括降雨、截留、下渗、填洼、流域蒸发、坡地汇流、河槽汇流等。融雪径流的形成过程需要有一定的热量,这样才能使得雪转化为液体。如果在融雪期间发生了降雨,那么就会形成雨雪混合径流。

河川径流的形成和集流过程

停蓄阶段。降水初期的水量一部分被植物或其他物质截留,另一部分被土壤吸收,或经岩石下渗到地下,而形成地下水。水量多余时,就开始在洼地聚集,洼地不能容纳时才逐渐形成地表径流。对地表径流而言,停蓄阶段是一个耗损过程,但对地下水补给有重要意义。

漫流阶段。漫流逐渐流向不同河槽的阶段是漫流阶段。降水形成的沿坡面流动的细小水流称为坡面漫流。坡面漫流分为沟流、片流和壤中流三种形式。沟流是主要形式,流速最快;壤中流发生在地表下数厘米处,流速较慢,降水停止后一段时间还可持续;片流不多见。

河槽集流阶段。雨水经坡面漫流进入河道后,开始向下游流动,河流的流量增加,这就是河槽集流。这一阶段水流的部分会流出河口,小部分会渗入地下补给地下水。河槽集流是径流形成的最终环节,在降水停止后还会持续一段时间。

径流的变化

年内变化

河水的补给状况、水位、流量等随着气候的周期性变化而发生变化,一年内的河流水情可以分为汛期、平水期、枯水期或冰冻期几个特征时期。汛期时,河流的水位比较高。就我国来说,汛期一般发生在夏季和春季。夏汛主要是由夏季的集中降水引起的,径流量较大。春汛主要是由积雪融化形成的。华北、东北的河流都有春汛,但水量小于夏汛,时间也较短。平水期是从汛期到枯水期的过渡时期,期间河流的水位处于中常水位。我国河流的平水期一般在秋季,持续的时间不长。枯水期时,河流的水位很低,河流主要依靠地下水补给,流量和水位的变化很小。枯水期一般出现在冬季,如果河流冰冻,又称为冰冻期。

年际变化

径流量年际变化是指河流一年内流量的变化。降水量是径流量年际变化的主要影响因素。径流量的年际变化一般会以离差系数来表示,数值越小代表径流量的年际变化越小。我国长江以南的径流量离差系数一般在0.30以下,长江下游、黄河中游、东北山区的各河流为0.40,淮河为0.60,海河为0.70。与我国各地的降水变率分布趋势基本相同。

影响径流的因素

径流是引起河流、湖泊、地下水等水体水情变化的直接因素,而影响径流的因素有降水、气温等气候因素,地形、地质、土壤、植被等流域的下垫面因素,以及人类活动因素。

气候因素是影响河川径流最基本和最重要的因素。气候因素中的降水和蒸发直接影响河川径流的形成和变化。其他的气候因素,如风、温度、湿度等往往也是通过降水和蒸发来影响河川径流的。

流域的下垫面因素主要包括地貌、地质、植被等。其中地貌中山地的高度和坡度影响着降水的多寡,而坡度的大小则影响流域内的汇流和下渗。同样,流域内的地质和土壤条件也决定着流域内水流的下渗、蒸发、最大蓄水量等。植被可以起到蓄水、保土的作用。

特征径流

特征径流主要是指洪水和枯水。

洪水是河流出现水量迅速增加或水位迅速增长的现象,多由强降雨、急剧融冰化雪、风暴潮引起。洪水的发生对河流附近的城市、村庄、建筑物、农田等造成威胁。

洪水可分为上游演进洪水和当地洪水。上游演进洪水是上游径流量显著增加,自上而下沿河推进的洪水。当地洪水是由所处河段的地面径流直接形成的。据观测,一条河流中上游的洪峰变幅大,比较激烈,下游的变幅小,比较平缓。假如河道的形状比较整齐,洪水的传播速度则较快;反之,则较慢。

枯水径流是指洪水减退后的径流,呈递减状态,长时间干旱后河流可能会出现一年中的最小流量。枯水径流的主要来源是流域的地下水补给,因此流域内的地质条件相当程度上决定着地下水对径流的补给量。砂砾层能大量储水,并在枯水期缓慢地补给河流,粘土层就没有这样的特征。溶洞可使大量雨水渗漏到地下深处,而成为稳定的水源。而河槽的下切深度和河网密度决定着截获地下水补给的水量大小。此外,森林、湖泊、沼泽、水库等的调节作用还可增加枯水径流。

河流与地理环境的相互影响

地理环境对河流的影响

河流的地理分布受气候条件的制约,湿润地区的河网密集,径流充沛,干旱地区正好相反。河流水位、流量、补给形式、水温特征等也无一不受气候的影响。如降水量的多少很大程度上决定了径流量的大小;降水的位置、移动方向等影响洪峰流量;气温、风、蒸发等因素对河流也有间接影响。

其他自然地理环境对河流也产生一定的影响。流域海拔高度、坡度、切割密度直接影响着径流的汇聚,地表植被等物质影响着河流的下渗情况。

河流对地理环境的显著影响

河流是地球水循环不可缺少的重要环节。内流河将水分从高山输送至内陆盆地或湖泊中,是水分小循环。外流河把水分由陆地带入海洋是水分大循环。河流输送水分的同时,热量和矿物质也被同时输送。热量的输送改变了流域内的气温,如在北半球由南向北流向的河流,就提升了北部流域的气温。矿物质的随水迁移,改变了地表上的高低不平。河流既是山地景观的创建者,也是冲积平原的制造者。

此外,荒漠中绿洲多,是因为河流流入沙漠让林业和农业得以发展,从而形成了生机勃勃的绿洲景观。

湖泊、沼泽和湿地

湖泊的成因和类型

湖泊是指陆地上相对封闭的洼地中汇集的水体。相对封闭的洼地称作是湖盆,湖泊由湖盆、湖水和水中所含的各种物质组成。湖泊有着自己独特的水文特征,如湖水的运动、水量的损耗和补给、水位的变化和它对周围河流径流的调节等。湖泊中的水产资源一般都比较丰富,而且还有其自身的独特性。湖区的气候和植被都很有特色。

湖泊按湖水含盐量的多少可分为咸水湖和淡水湖;按地理位置可分为热带湖、温带湖、寒带湖等;按湖水的最终流向可分为外流湖和内流湖;按湖水中营养物质的富集程度可分为富营养湖、贫营养湖以及贫富营养过渡性湖泊。

一般来说,按照湖泊的成因可分为如下几类:①地质构造运动形成的构造湖,这样的湖泊湖岸陡峭,水比较深。②冰川作用形成的冰蚀湖和冰碛湖。③火山喷发,在火山口的洼地中积水形成的火山口湖。④地震、滑坡、山崩、泥石流、冰碛或火山喷发的熔岩和碎屑物将河流堵塞而形成的堰塞湖。⑤风力作用使得地面形成风蚀洼地而积水,或因沙丘之间洼地积水而形成的风蚀湖。风蚀湖一般湖底比较平、湖岸比较规则、面积小、水位较浅、湖水面变化大、无出口、含盐量高,大多都是暂时性湖泊。⑥由于水的溶蚀作用,形成溶蚀洼地,然后积水形成的溶蚀湖。⑦人为活动形成的人工湖,如水库。事实上任何湖泊都不是单一因素影响形成的,一般情况下都是在多种因素的共同作用下形成的。地球上的湖泊总面积约为2058700平方千米,约占陆地面积的1.5%。

牛轭湖

火山口湖

断陷湖

湖水的性质

湖水呈现出的颜色有浅蓝、青蓝、黄绿、黄褐色,受含沙量、泥沙颗粒大小、浮游生物种类的影响。通常含沙量小、泥沙颗粒小、浮游生物少的湖水呈浅蓝或青蓝色;反之则呈黄绿或黄褐色。湖水透明度的测量方法与海水的相同,与太阳光线、湖水含沙量、温度、浮游生物关系密切。

湖水主要靠吸收太阳辐射来实现增温,此外还吸收水汽凝结潜热、有机物分解热量和地表传导热。湖水温度分布有三种状态。当湖面温度低于4℃时,水温呈逆列状态,即水温随深度的增加而升高,这主要出现于冬季;当湖面温度高于4℃时,水温呈正列状态,即水温随深度增加而降低,这主要出现于夏季;当湖面温度等于4℃时,水温趋于均匀,处于等温状态,这主要出现在春季。因此,热带湖水的温度一般为正列状态;温带随季节变化三种状态都会出现;高山和极地湖水一般为逆列状态。

湖水的化学成分大致相同,但不同湖泊的化学元素含量和变化会有较大的差异。补给水源影响着湖水的化学元素,如地下水的化学元素就比雨水的化学元素种类多,河水中则含有有机酸。

不同的自然条件下,尤其是土质不同的地区,湖泊中化学元素的种类和含量的差别就会很大。降水量和蒸发量的比值不同会造成湖水有不同的盐分。就盐湖来说,因所处的环境不同,有的湖水成分以氯化物为主,食盐含量大,而有的则主要含有芒硝和硼。

湖泊水文特征

湖水的运动分两种形式:定振波和湖流。

定振波是整个湖水围绕某一个或某几个重心而摆动的现象。在大气压力发生急剧变化、山地下沉气流冲击湖面,尤其是发生暴风雨时,湖面大部分水的平衡遭到破坏而产生定振波。因湖的形状和定振波的摆动不同,通常可将其分为单定振波和双定振波。

湖流产生的因素很多。如河流入口处会发生单向缓慢流动;风向稳定时背风岸的湖水容易形成垂直环流;水温变化可造成湖水垂直循环,发生湖流;定振波也可产生湖流。温带湖每年发生两次对流,称为双对流。热带、极地或高山湖每年只发生一次对流,分别叫热单对流和冷单对流。

湖水的水量平衡和水位变化紧密相连。湖水收入超过支出时,水量呈正平衡,水位就会上升;相反,水量呈负平衡,水位下降。若湖水的水量平衡,湖面降水量、入湖地表径流量、入湖地下径流量、湖面水汽凝结量之和,与出湖地表径流量、湖水渗透量、湖面蒸发量之和的差就是一定时期内湖的水量变化。

不同补给形式的湖泊水位会有不同的升降。融雪补给湖的最高水位在春季;冰川补给湖的最高水位在夏季;雨水补给湖的最高水位在雨季。

沼泽

地面长期潮湿,排水不畅,生长着大面积的喜温和喜水植物,并有泥炭堆积的洼地,叫做沼泽。世界沼泽总面积约有268万多平方千米。世界上沼泽面积比重最大的国家是芬兰,被人们称作是“沼泽之国”。

沼泽有的是因江、河、海在它们的周边地区积水而形成;有的是因高山草甸、森林、洼地中的地下水汇集而形成;还有的是因湖泊的淤积变浅而形成。按照地貌条件,沼泽可分为山地沼泽、高原沼泽和平原沼泽;按植被类型可分为藓类沼泽、草本沼泽等。

沼泽中的水大都以重力水、毛细管水、薄膜水等形式存在于草根和泥炭之中。部分沼泽在个别时期中有积水或表面流,大部分沼泽只存在缝隙中慢慢渗透的表层流。沼泽的蒸发量很大,径流量很小。

沼泽水富含有机质和悬浮质,水体很浑浊,水的矿化度和硬度比较低。沼泽中含有很多资源。如丰富的芦苇、泥炭藓和泥炭。其中芦苇是重要的造纸原料;泥炭藓是一种很好的愈合伤口的药;泥炭是很好的肥料,可以改良农田。

沼泽还有调节气候、净化环境的作用,因此,许多国家都把沼泽开辟为旅游地,有的还在沼泽地区建立了自然保护区。

湿地

湿地是处于陆生生态和水生生态之间的过渡性生态地带,它指的是天然或者是人工的、长久或者是暂时的沼泽地、泥炭地或水域地带,以及静止或者是流动的淡水、半咸水、咸水,还包括低潮时不超过6米的水域。

湿地广布于世界各地,湿地上分布有众多的野生动植物资源,是地球上重要的生态系统。很多珍稀水禽的繁殖和迁徙都离不开湿地,因此湿地又被人们称为“百鸟的乐园”。湿地还具有强大的生态净化作用,因此又被人们称为“地球之肺”。

湿地所具有的功能是多方面的,作为可以直接利用的水源它可以补充地下水,还可以控制洪水和防止土壤的沙化。除此之外还能滞留有毒物质,改善环境;还可以有机物的形式储存碳元素,减少温室效应等等。湿地还是众多动植物生存的乐园,同时能为人类提供食物、能源、原材料和旅游场所,是人类生存发展的重要基础之一。

湿地的类型多种多样,通常可分为自然和人工两大类。其中自然的湿地包括沼泽地、泥炭地、湖泊、河流和海滩;人工湿地主要有水稻田、池塘、水库等。据统计,世界共有自然湿地约855.8万平方千米,约占陆地总面积的6.4%。

泉和瀑布

泉是地下含水层或含水通道呈点状在地表涌出地下水的现象,是地下水的集中排泄形式。在适宜的地形、地质和水文条件下,潜水和承压水集中排出地面成泉,往往是一个点状泉口,有时是一条线或一个小范围。

泉一般出现在山区与丘陵的沟谷和坡角、山前地带、河流两岸、洪积扇的边缘和断层带附近,平原地区比较少见。泉水通常是河流补给的重要部分,有些大型泉本身就是河流的源头。

按不同的分类标准,泉有不同的的分类方式:

按泉水流出的动力性质,泉可分为上升泉和下降泉;按泉水的温度,可将其划分为冷泉、微温泉、温泉、热泉、高热泉;按含水层空隙的特征,可分为孔隙泉、裂隙泉和岩溶泉;而按泉水涌出的状态,又可分为间歇泉、多潮泉。

温泉是指水温超过20℃的泉,或水温超过当地年平均气温的泉。温泉是自然产生的,多是降水或地表水渗入地下深处,吸收周围岩石热量后上涌出地表而形成的,一般是矿泉,包括氯离子、碳酸根离子、硫酸根离子等成分。

瀑布

流动的河水突然近似垂直跌落,就形成了瀑布。从时间尺度上来说,某个瀑布终将会消失。瀑布的成因有多种说法,我国的科学家认为,河床底部岩石的软硬程度不同,软性岩石受流水冲击而形成陡坡,坚硬的岩石则逐渐凸出,河水流过凸出地时,就形成了瀑布。此外,瀑布的形成还受山崩、断层、熔岩堵塞、冰川等作用的影响。

维多利亚瀑布位于中非的赞比亚和津巴

根据瀑布的外观和地形的构造,瀑布有多种分类。

按瀑布水流宽高的比例,可将其划分为垂帘型瀑布和细长型瀑布;按瀑布岩壁的倾斜角度,可划分为悬空型瀑布、垂直型瀑布和倾斜型瀑布;按有无跌水潭,可分为有瀑潭型瀑布和无瀑潭型瀑布;按水流与地层倾斜方向,可分为逆斜型瀑布、水平型瀑布、顺斜型瀑布和无理型瀑布;按所在地形,又可分为名山瀑布、岩溶瀑布、火山瀑布和高原瀑布。

地下水

地下水的物理性质

温度。地下水的温度受区域自然条件的制约。极地、高纬、山区地下水的温度较低,而热带、火山活动区的地下水温度很高。地下水温与当地气温也有一定关系。经测量,温带和亚热带的浅层地下水的年平均气温比所在地区的平均气温高1~2℃。

颜色。地下水的颜色一般是无色透明的,但在含有某种离子、富集悬浮物或含胶体物质时,就会显出颜色,如含亚铁离子的地下水呈浅蓝绿色。

透明度。地下水含有的盐类、悬浮物、有机质和胶体决定了其透明度。地下水透明度按级别可分为透明、微混浊、混浊和极混浊四级。

相对密度。地下水的相对密度取决于水温和溶解盐类。水温越高,溶解的盐分越多,相对密度就越大。地下淡水的相对密度接近于1。盐度越高的地下水相对密度就越大,但变化的范围较小。

导电性。地下水中,离子的含量越多,离子价就越高,水的导电性也就越强。测定了某处地下水的电阻率,它的导电率就是1与电阻率的比值。

放射性。因地下水中还有放射性气体和放射性物质,所以具有放射性。已知的地下水的三个放射性系统是铀-镭系、锕系、钍系。

嗅感和味感。地下水的嗅感与所含气体、有机物以及温度有关。含硫化物时有臭鸡蛋味,含腐殖质时有沼泽味,但低温时气味不显著,40℃时气味最重。

不同化学成分的地下水味感不同。含氯化钠的水有咸味;含硫酸钠的水有涩味;含有机质的水有甜味;二氧化碳含量高的水比较清凉可口。

地下水的化学性质

溶解气体。地下水中溶解的气体,可分为四类:生物化学成因气体,有机物和矿物在微生物的作用下分解而成,如CO2、N2、O2等;化学成因的气体,一部分是常温、常压下天然化学反应形成的,另一部分是在岩石圈高温、高压下发生变质作用形成的;放射性成因气体,由放射性元素蜕变而成,如He、Re、Th等。

氢离子浓度。氢离子浓度用pH表示。以7为分界点,当pH=7时,地下水是中性;pH>7时,呈碱性;pH<7时,呈酸性。在一定pH之下,某些化合物可从水中沉淀出来。因此掌握水的pH后,能预测出哪些元素已经析出,哪些还可能溶解在水中。

离子成分和胶体物质。地下水的主要离子成分和胶体物质主要有:氯离子、硫酸根离子、重碳酸根离子和碳酸根离子、钠离子、钾离子、钙离子、镁离子、氮化物(氨离子、亚硝酸根离子、硝酸根离子)、铁离子、硅。

地下水的动态和运动

在各种因素的作用下,地下水的流量、水位、温度和化学成分会发生日变化和季节变化,这就是地下水的动态。它主要受气候、河湖水位、地壳升降运动、植物蒸腾作用以及人为因素的影响。

地下水的运动形式有层流运动和紊流运动两种。层流运动指水在岩石空隙中流动时,水质点有秩序地、相互混杂地流动,是最为常见的运动形式。紊流运动指水在岩土空隙中流动时,水质点无序地、相互混杂地流动。

地下水在宽大裂隙或空洞中有较大的流速时,会形成紊流。但在绝大多数自然条件下,地下水的流速较小,多为层流运动。地下水的运动也称为渗透。平均渗透速度在1000米/天以下的运动都视为层流运动。

地下水的分类

根据地下水的埋藏条件可分为上层滞水、潜水和承压水。

上层滞水是由于局部的隔水作用,使下渗的大气降水停留在浅层的岩石隙缝或者是沉积岩层中,形成了蓄水体。上层滞水通常有吸着水、薄膜水、毛管水、气态水等形式,这类水的分布范围比较小,水量也不大,而且还有明显的季节变化。

潜水指的是存在于地表之下第一个稳定隔水层之上的地下水。我们通常所见的地下水大多是潜水,潜水流出地面就形成了泉。潜水的分布比较广,水量稳定,是农业生产和生活用水的重要保证。

承压水指的是存在于上、下两个隔水层之间的地下水。这种地下水一般都承受着巨大的压力,尤其是当上、下两个隔水层呈倾斜状态的时候,隔水层中的水就要承受更大的压力,如果将上部的隔水层凿穿,则水就会喷出来,形成自流水。

冰川

成冰作用与冰川类型

成冰作用指积雪转化为粒雪,再经过变质作用形成冰川冰的过程。积雪转化为粒雪的过程被称为粒雪化过程。这一过程可分为冷型和暖型。冷型是积雪没有出现融化和再冻结,粒雪化过程比较缓慢,雪粒直径通常不足1毫米;暖型的粒雪化过程比较快,粒雪直径比较大。

不同冰川的规模、形态、生成年代、性质等都有不同的特点。不同的划分标准下有不同的冰川类型。按冰川形态、规模及所处地形将冰川分为山岳冰川、大陆冰川、高原冰川和山麓冰川。山岳冰川主要分布在中低纬山区,冰川形态受地形的严格限制。按形态,山岳冰川可分为悬冰川、冰斗冰川、山谷冰川。大陆冰川目前只存在于两极地区,面积和厚度很大,不受地形限制,冰川下常掩盖着巨大的山脉和洼地。高原冰川也叫冰帽,覆盖在起伏和缓的高地上,周围伸出许多冰舌。山麓冰川是由数条山谷冰川在山麓扩展汇合成的广阔冰原,是山岳冰川向大陆冰川转化的中间环节。

地球上冰川的分布

世界冰川分布最集中的地区是南极大陆,冰盖和冰棚的总面积是1320万平方千米,冰盖平均厚度为2000米。北极地区冰川总面积是200万平方千米,其中格陵兰岛冰盖面积是173万平方千米。亚洲冰川主要分布在兴都库什山、喀喇昆仑山、喜马拉雅山、青藏高原、天山和帕米尔高原,其中我国冰川面积占一半以上。北美洲的冰川主要分布在阿拉斯加和加拿大,总面积约6.7万平方千米。南美洲的冰川面积约为2.5万平方千米,居第五位。欧洲的冰川主要分布在斯堪的纳维亚、阿尔卑斯山,面积为8600平方千米。大洋洲冰川面积约1000平方千米。非洲冰川面积最小,只有23平方千米。

冰川的分布受雪线高度的制约,没有高出雪线的任何地区都不会形成冰川。雪线是多年积雪区和季节积雪区之间的界线。雪线上的年降雪量等于年消融量。而雪线的高度受气温、降水量和地形的影响。多年积雪的形成要求近地面空气层的温度长期在0℃以下,因此低纬度的雪线一般较高。降水量较低的地区雪线也相对较高。此外,坡向也影响雪线高度,如祁连山南坡雪线较高,而北坡雪线相对较低。

南极洲的气温极少能达到0℃以上。南

冰川对地理环境的影响

冰川对气候的影响

在冰川区及附近,冰川本身就是自然地理要素之一,并形成了独特的冰川景观。冰川是一种特殊的下垫面,冰盖的扩展将大大增强对太阳光的反射率,使地球的气温降低,并影响气团和环流的性质。规模较小的冰川只对小范围的气候产生影响,规模较大的冰川,如南极冰盖,会对范围较大的地区产生影响。

冰川对水循环的影响

冰川在水循环中有重要作用,冰盖的增减直接影响到海平面的升降。

大气降水到达地面后只有一部分可以转化成地表径流,而如果是冰川则几乎都可以全部转化成径流,因为冰川表面不存在蒸腾,蒸发量和渗透量也比较小。低温湿润的季节冰川消融受抑,高温干旱的季节冰川消融加强,这就对径流起到了调节作用。

冰川对植被的影响

冰川向低纬度推进时,当地土壤发育会被中断,地面的植被将遭到破坏,动物会被迫迁移。相反,冰川消融后,土壤、植被重新发育,自然带向高纬度和高海拔地区移动。

冰川对地表形态的影响

冰川的侵蚀和堆积作用可以显著地改变地表形态,形成特殊的冰川地貌。曾有冰川覆盖的地区,就显示出特殊的冰川地貌。山岳地区也有特殊的冰川地貌。 JLFHVoJ/mcQe3M/iIZ7uBDC8FrMlV11Ik1grB/cjWP921TVZ543IVQTMDmyN3+UA



七、地貌

地貌成因与地貌类型

地貌成因

陆地上大型的山系、高原、盆地、平原,以及大洋中脊、洋盆、海沟、大陆架、大陆坡等地貌的形成无一不受构造运动的影响。构造运动造就了地球表面的巨大起伏。比如陆地,大型的平原、盆地、高原与地块的整体升降运动有关;大型的山脉与山系或地壳褶皱带有关。

地貌形成的原因很多,有气候、岩性、生物等自然原因,也有人为原因。

高纬和高山寒冷气候条件下,冰川边缘作用使山地形成角峰、刀脊、冰斗、U形谷、冰川三角面等冰川地貌,以及冰核丘、石河、石带、石海、石环等冰缘地貌。温暖潮湿气候条件下,各种流水地貌在流水的作用下发育而成,如平原、缓丘、穹状或钟状基岩岛山。干旱气候条件下,风和间歇性洪流促使风蚀残丘、风蚀洼地、沙丘、沙垅、洪积扇、洪积平原等地貌形成。

各种岩石因成分、硬度、性质等不同,对外界作用力的抵抗能力不同,因而形成不同的地貌。坚硬和胶结良好的岩石往往会形成山岭和峭壁;松软的岩石往往会形成陡崖和石柱;碳酸盐岩石在湿热气候条件下容易发育成喀斯特地貌。

生物作用常使岩石发生机械风化和化学风化,进而影响地貌发育。植物根系的生长、穴居动物挖洞等行为可导致岩石机械风化。而生物特别是微生物新陈代谢和遗体分解过程中的有机酸可促使岩石化学风化。此外,生物的遗体可形成生物岩。

人类对地貌发育的影响主要有两种:一种是通过改变地面植被、水流等地貌发育条件来加速或延缓某种地貌的形成;另一种是通过修建梯田、挖掘矿石、建筑水库等方式来直接改变地貌。

山地

山地是地球表面高度较大、坡度较陡,蜿蜒曲折、巍峨奇特的高地的统称。山地一般有这样一些特点:绝对高度和相对高度都比较大、顶部高耸、坡度陡峭、沟谷比较深、岭谷连绵起伏。它通常位于地质结构比较复杂、构造运动和外力剥蚀作用比较活跃的地区。

山地是大陆最基本的地形之一,因此分布十分广泛。世界上山地分布最广的地区是欧亚大陆和南北美洲大陆。我国的山地大多分布在西部地区。

山地中的山一般都由山顶、山坡和山麓三个部分组成,它们的海拔一般在500米以上,以较小的高度区别于高原,以较大的高度区别于丘陵。山地按照成因可分为构造山、堆积山和侵蚀山;按照高度又可分为小起伏山地(小于500米)、中起伏山地(500~1000米)和大起伏山地(1000~2500米),以及极大起伏山地(大于2500米);按照海拔高度可分为低山(小于1000米)、中山(1000~3500米)、高山(3500~5000米)和极高山(大于5000米);按照山的成因可分为断层山、褶皱山、火山、侵蚀山等。通常情况下,将沿一定的构造线延伸的岭谷相间的山体称为山脉,将按一定方向延伸的、有成因联系的一组山脉称为山系。

高原

高原指的是海拔一般在1000米以上,面积广大、地形开阔,周围有陡峭的坡地为界限,相对完整的大面积隆起的地区。高原的主要特征是海拔较高,完整地大面积隆起,广阔而平坦。高原以较大的高度区别于平原,以较大的平缓地面和较小的起伏区别于山地。

高原也是大陆最基本的地形之一,它在世界上也有着广泛的分布。我国的高原总面积约占总面积的26%,我国著名高原有青藏高原、黄土高原、云贵高原等。每座高原上都有独特而迷人的景观。我国的青藏高原平均海拔约在4000~5000米左右,有“世界屋脊”之称。

高原按组成岩石的性质不同可分为黄土高原、岩溶高原等;按照分布状况可分为山间高原、大陆高原、海底高原和山麓高原。山间高原一般都是和它周围的山脉同时形成的,部分或者是全部被山脉包围着,著名的山间高原有青藏高原。山麓高原是指介于山脉和平原之间的高原,著名的高原有巴塔哥尼亚高原。大陆高原指的是从低地或者是海边陡然升起的高原,如南非的一些高原。海底高原又叫做海台,它是顶面平坦而宽阔的海底高地,一般相对于临近低地高差在1000米以上。

丘陵

丘陵指的是地球表面一般高度在500米以下,相对高度不超过200米的坡度缓和、起伏不大、顶部呈浑圆状态的连续分布的圆丘状地貌。丘陵有这样的一些特征:相对高度较小,坡度较缓,切割破碎,散布。

在地貌的演化过程中,丘陵属于山地向平原过渡阶段的中间地貌形态。从构造上看,丘陵一般都处于地壳抬升比较缓慢的地区。

丘陵按照高度可以分为两种类型:200米以上的为高丘陵;200米以下的为低丘陵。按坡度的陡峭程度可分为:坡度大于25°的为陡丘陵;小于25°的为缓丘陵。按照岩石的组成可分为花岗岩丘陵、火山岩丘陵、各种沉积岩丘陵,如黄土丘陵、红土丘陵等。按成因又可分为构造丘陵、火山丘陵、风成沙丘丘陵、荒漠丘陵、冻土丘陵、岩溶丘陵和剥蚀—夷平丘陵等。按照分布位置可以分为山间丘陵、山前丘陵、海洋丘陵、平原丘陵等。

平原

平原指的是海拔高度较低的平坦而开阔的地面,它的海拔一般约在200米以下,地表有时呈平缓起伏的状态。平原介于丘陵和高原之间,它以较小的高差区别于高原,以较小的起伏区别于丘陵。

平原可以根据它的组成和动力作用不同而分成不同的类型和级别。我们可以按它的成因分为堆积平原、侵蚀平原、构造平原等。

由堆积作用形成的平原称为堆积平原,堆积平原一般表面平坦、上面覆盖着松散的堆积物。堆积平原根据外部的动力作用还可以分为冲积平原、洪积平原、冲积—洪积平原、风积平原、冰碛平原、冻土平原、海积平原、冲积—海积平原等等。在堆积平原类型中分布最广的是冲积平原。

侵蚀平原是在各种不同外力作用下侵蚀而形成的平原。侵蚀平原一般面积都比较小,而且它的分布还具有一定的地域性,如各种石质平原和岩溶平原。

构造平原一般是由于平原所在地的底层倾角平缓,岩石的性质一致,外力的侵蚀作用微弱而形成的平原,这样的平原最典型的特点就是在形成的时候,受外力作用比较小。

盆地

盆地指的是四周隆起、中间凹成盆状的地貌。地球上盆地的面积有大有小,一些比较小的盆地面积只有几平方米或者是几十平方米,如山间盆地;而一些较大的盆地则可以达到几十万平方千米,如我国的塔里木盆地,它比我国东部的一个省还要大。有的盆地海拔在几千米左右,而有些盆地可能在海平面以下。一般情况下,盆地中常有水、湖泊或者是很厚的沉积物。

按盆地的地理位置,可以分为内陆盆地、深海盆地和大陆边缘弧盆。盆地按形成原因还可以分为构造盆地和外力侵蚀盆地。按平面形态还可以分成圆形、椭圆形和矩形盆地。还可以按照盆地的敞口或封闭形态分为山间盆地、外流盆地和内流盆地。

山间盆地在山区中比较常见,它的面积一般比较小,通常只有几平方米或者是几十平方米,尽管山间盆地的面积不大,但它通常是山区经济最发达的地方,这和盆地中平坦的地表和丰富的水源有关。有些盆地并不是一个完整的盆状体,而是周围留有缺口,并有河流从中间穿过,这样的盆地被人们称作是外流盆地。外流盆地的水源一般比较充足,地势平坦,土壤肥沃,比较适合人们生产生活。有些盆地周围的地势比较高,河流只能进入盆地而不能流出,这样的盆地被称作是内流盆地。内流盆地一般都处于大陆内部地区,矿产比较丰富,但干旱少雨。

岛屿

我们通常将散布在海洋、湖泊和河流中的四面环水、自然形成的陆地叫做岛屿。将彼此相距比较近的一组岛屿称为群岛。

岛屿的面积大小相差悬殊,小的不到1平方千米,大的可达几百万平方千米。通常情况下,将较大的岛屿称为“岛”,特别小的岛屿称为“屿”。地球上的岛屿特别多,足有几万个,总面积约有970万平方千米。世界上最大的岛屿是格陵兰岛,总面积达217.56万平方千米;最大的群岛是马来群岛,岛屿数量在两万个以上。

岛屿的成因最主要的有三种:一,因地壳运动而引起陆地下沉或者是海面上升,最终部分陆地与大陆分离,形成岛屿;二,海底火山喷发出来的物质堆积成岛,或者是珊瑚礁形成岛屿;三,由河流或者是湖泊中的泥沙堆积而形成岛屿。

岛屿按照成因可以分为大陆岛、火山岛、珊瑚岛和冲积岛四大类。大陆岛是由地壳运动使得部分陆地与大陆分离而形成的。火山岛是由海底火山喷发,岩浆堆积而形成的,主要分布在太平洋的西南部、印度洋的西部、大西洋的中部地区。珊瑚岛是由浅海区的珊瑚遗体堆积而形成的,一般位于南北纬20°之间。冲积岛是由河流泥沙堆积而形成的,一般位于河流的入海口处。

半岛

仔细阅读世界地图,我们通常会发现各个大陆边缘总有一些伸入到海洋之中的陆地,它们形态各异,不尽相同,比较著名的如亚平宁半岛、印度半岛等等。这些伸入到海洋或者是湖泊之中的、三面临水一面与陆地相连的陆地统称为半岛。

一些大的岛屿主要是地层断陷形成的。此外,有些地区由于沿岸的泥沙流携带着大量的泥沙由陆地向岛屿堆积,或者是岛屿受海浪的冲击侵蚀,使得一些碎屑物质由岛屿向陆地堆积,最终使得岛屿与陆地相连,形成了陆连岛。一般的半岛都是在多种因素共同作用下形成的。

世界上有许多非常著名的半岛,如美国的佛罗里达半岛、非洲大陆东部的索马里半岛。世界上最长的半岛是加利福尼亚半岛,最大的半岛是阿拉伯半岛(面积约为322万平方千米)。亚洲的印度半岛和中南半岛是世界上的第二和第三大半岛。

海峡

海峡和海湾一样,也是海洋的一部分,它介于两块大陆或者是大陆与沿岸的岛屿之间,就像一座天然的水上桥梁一样,将两片比较宽阔的海域连接在一起,通常被人们称为“海上通道”、“黄金水道”等。

海峡是地壳运动的产物。地壳运动的时候,临近海洋的陆地地壳发生断裂,随后开始下沉,最终凹陷为深沟,被海水淹没,把整块大陆或者大陆与其临近的海岛,或者是相邻的两块大陆分割开来,形成了海峡。由于海峡是大陆地壳发生断裂,受海水侵蚀形成的,因此,侵蚀的时间越久,海峡的深度就越大。一般通过海峡的水流都比较急,有些地区的潮流作用十分强烈。当潮流流经狭窄的海峡时,携带沙砾的潮流流速加快,强烈地冲击海峡两岸。当潮流到达开阔的海域以后,流速开始减慢,携带的沙砾就会呈扇形堆积在海底,形成潮流三角洲。

世界上有许多著名的海峡,相对比较重要的约有三四十个,其中马六甲海峡、直布罗陀海峡、霍尔木兹海峡、台湾海峡等尤为重要。这些海峡不仅仅是重要的海上交通要道,而且还具有重要的经济和军事意义。为了进一步沟通各大洋之间的联系,人们还开凿了一些著名的人工海峡,如苏伊士和巴拿马运河。这些人工海峡为海上航行带来了极大的便利,同时也为世界各国的友好往来提供了有利的条件。

海湾

海湾是一片三面环陆、一面为海的海洋,形状有U形、圆弧形等。海湾与海洋的分界线一般是湾口附近两个对应海角的连线。

海湾的成因如下:

①大多数海湾都是海平面上升的结果。当海平面上升时,海水进入陆地,海岸线变曲折,凹进陆地的部分就是海湾。

②有的海岸带的岩石硬度较小,在不断遭受海水侵蚀时,逐渐向陆地凹进,逐渐形成了海湾。其中比较坚硬的部分就形成了岬角。

③海岸泥沙纵向运动的沉积物形成沙嘴时,可导致海岸带一侧被遮挡形成呈凹形的海湾。

④地壳的挠曲、褶皱和断层也可形成一些海湾。

世界十大海湾是:墨西哥湾、孟加拉湾、几内亚湾、阿拉斯加湾、哈得孙湾、卡奔塔利亚湾、巴芬湾、大澳大利亚湾、波斯湾、泰国湾。

风化作用与块体运动

风化作用的类型

风化作用包括物理风化和化学风化。物理风化是岩石由整体破裂为碎屑,物理性质发生显著变化,如裂缝、孔隙增加,但化学性质没变的过程,又称为机械分化或崩解。岩石在受到负荷和巨大压力时,裂隙和节理会扩大,温度的昼夜变化会使岩石热胀冷缩,岩石表面的干湿变化会造成岩石胀裂、劈裂,植物根系的生长会对岩石造成挤压和穿透,动物挖掘洞穴也会对岩石表面造成机械破坏。

化学风化是岩石在大气、水或生物作用下发生分解,使岩石的化学成分发生变化,并组成性质不同的新物质。岩石在由地下上升到地表后,其中的矿物成分不再具有稳定性,而是沿裂缝、节理发生水化、水解、溶解和氧化作用。水化作用是岩石矿物吸收水分后转变为含水矿物,体积膨胀、硬度降低,抵抗能力下降,并对周围岩石产生压力。水解作用是矿物遇水发生水解的过程。溶解作用是岩石无机矿物不同程度溶解于水的过程。氧化作用是矿物被大气游离、水体溶解氧氧化,形成高价化合物的过程。

风化壳

经风化作用形成的残留矿物、次生矿物、可溶性物质统称为风化产物。经风化、剥蚀后依然残留原地覆盖在母岩表面的风化产物,称为风化壳。风化壳的形成条件:一是有高温多雨、岩石多节理、构造破裂显著等有利于风化作用持续进行的气候、岩性和构造条件;二是有地貌较稳定、植被覆盖率高、地下水流动较高等有利于风化产物残留原地的地貌、植被、水文条件。

风化壳的基本特征是:风化壳空间分布上呈不连续性,厚度差异也很大,有的可厚达100~200米,有的还不到1米;组成物质主要是黏土和碎屑,也包括少量残存的液体;结构疏松,表层分散性强,分解程度高,粒径细,中下层正好相反;发育较好的风化壳可分为强度风化、中度风化和微风化三个层带。

热带和亚热带风化壳的主要类型有,富铝型酸性风化壳和硅铝铁型酸性风化壳。温带森林带的风化壳比较薄,含褐铁矿,颜色呈棕色或黄色,大部分是硅铝黏土型弱酸性风化壳,代表性产物是高岭土类黏土矿物。半湿润、半干旱森林带和草原带,广泛发育碳酸盐型中性至微碱性风化壳。干旱区的风化壳色浅、层薄、碎屑多,富含盐类,呈碱性。高寒区与荒漠区的典型风化壳是残积粗岩屑型风化壳。

崩落与崩塌地貌

陡坡的岩体和土体在重力的作用下突然快速下移的现象称为崩落或崩塌。其发生的条件有:山坡坡度陡,相对高度大,或具有外倾结构面,或处于断层破碎带;风化作用强;降水或地下水引起坡体变化;地表水冲刷坡麓等。这些条件导致岩体、土体失稳,松散堆积物坡度超过休止角,从而引发崩落。

崩落或崩塌可以形成两种地貌——山坡上部的崩塌崖壁和坡麓的岩堆(倒石堆)。崩塌崖壁的坡度较大,一般呈悬崖峭壁状。岩堆的上部岩块较细,下部岩块很大,呈上尖下圆的半锥状。崩落使坡面上部后退,而岩堆使坡面下部前伸,因此坡度逐渐缓和。崩落结束后,岩堆经风化可发育土壤和生长植被。

峡谷两侧是崩落的常发地,滚落的巨大崩塌岩块常常堵塞峡谷。如1911年帕米尔坦格河谷山崩之后巨型山崩体堵塞河谷,并形成了长、宽、深分别为76千米、1.5千米、262米的大湖。

滑坡地貌

滑坡是由岩石、土体或碎屑堆积构成的山坡体在重力作用下沿软弱面发生的整体滑落现象。滑坡只有在重力引起的下滑力超过软弱面的抗滑力时才能发生,因此滑坡必须具备一定的内在因素和诱发因素。内在因素主要有地层岩性、地质结构、坡体结构和有效临空面等。诱发因素主要包括以降水强度、地下水、地震、地表径流对坡麓的冲刷等方面的自然作用,以及以在坡地上蓄水灌溉、建房筑路等人为作用。

滑坡体和滑动面都可形成滑坡地貌。滑坡体形成的地貌主要有滑坡裂缝、滑坡阶地、滑坡垄丘与滑坡洼地等类型。滑坡裂缝主要分布在滑坡体两侧及前缘隆起处,由张力和剪切力形成。滑坡阶地是滑坡体分级下滑的产物。滑坡垄丘是滑坡体前缘的隆起形态,丘后部相对低洼处就是滑坡洼地。

蠕动

坡面的土体、岩体及其风化碎屑物在重力作用下,缓慢移动的现象叫做蠕动。蠕动发生的最适宜坡度是15°~30°。冻融交替、干湿变化等均可引起蠕动。

蠕动的速度非常缓慢,每年的进程只有几毫米或几十厘米,因此研究蠕动必须要建立半定位或定位观测站进行长期的观测。岩层蠕动的深度差异较大,通常情况下为3~5米,最深时可达到40~50米。蠕动深度由岩性、产状和坡度三个因素决定。岩层越软,坡度越大,蠕动的深度也会越大。

蠕动可分为松散层蠕动和岩体蠕动两种类型。松散层蠕动是颗粒在重力的作用下,由冷热、干湿变化引起体积膨胀、收缩。岩层蠕动是坡面的岩体在重力作用下,发生缓慢的塑性变形或弹性变形,在页岩、片岩、千枚岩、粘土岩等柔性岩层组成的坡地上比较容易发生。

蠕动可产生新的地貌,如在青藏高原就因蠕动而形成了鳞片状山坡和蠕动泥流地貌。此外,长期的蠕动还会给人类的生产和建设带来危害,如电线杆倾倒、围墙扭裂、厂房破坏、水坝变形等,这直接影响人类的生活环境。

流水地貌

流水作用

流水作用包括侵蚀作用、搬运作用和堆积作用。

流水对坡面、沟谷、河谷等都有侵蚀作用。流水对坡面的侵蚀呈片状,并且比较均匀。对河谷和沟谷的侵蚀呈线状,有下切、侧蚀和溯源侵蚀三种形式。下切主要影响谷底,能让谷底加深;侧蚀可使谷坡后退,谷底拓宽;溯源侵蚀则会使谷地向源头方向伸长。溯源侵蚀最强的是黄土高原的某些沟谷,一次暴雨就可让其源头前进数十米。

流水的搬运主要有两种形式,一种是推移,另一种是悬移。推移就是使沙砾沿着沟底或河床滑动、滚动和跃动。据计算,启动流速的六次方和颗粒质量成正比,因此山区河流可以搬运质量比较大的砾块。河流中细粒物质呈悬浮状态的运动是悬移。流水的搬运能力发生变化,搬运粒径物质的方式也会发生相应的变化,但体积较大的砾石以悬移方式运动的可能性较小。

河水的搬运能力在含沙量较多、搬运能力下降时,一部分泥沙就会发生堆积。长期的堆积会形成新的地貌。另外,流量和流速的减小、河床比降由陡变缓都会导致堆积作用的产生。

大气降水对不同形态的地面影响是不同的,由

坡面流水地貌

坡面流水是雨水或冰雪融水直接在坡面上形成的薄层片流和细流。细流是受坡面微小起伏影响汇集而成的,在流动过程中时分时合,没有固定流路,因此对地表的冲刷和侵蚀比较均匀。由坡面冲刷下来的物质是江河泥沙的主要来源。

坡面侵蚀强度受坡度、坡长、坡面组成物质、降水强度、降水持续时间、植被覆盖度等因素的影响。随着坡度的增加,侵蚀力也会相应地增强,在坡度为40°时,达到最强。坡度超过40°后,坡面积和径流量显著减小,侵蚀力会随之减弱。坡面长度的增加有利于增加水量和动能,提高侵蚀力,但如果泥沙量增加,侵蚀作用就会受到影响。降水强度大,坡面的径流一般会大,但这也受坡面植被的影响。

坡面侵蚀物质堆积在缓坡、洼地、坡麓上时,能形成由亚黏土、沙粒和细岩屑组成的,分选度和磨圆度低,粗具倾斜层理的坡积物。如坡积物在坡麓处成片分布,就会形成裙裾地貌,称之为坡积裙或坡积裾。

沟谷流水地貌

沟谷河流是由坡面细流顺坡而下时汇集而成的,流路相对稳定,侵蚀冲刷能力显著增强的水流。在沟谷河流的影响下会形成独特的沟谷地貌。

沟谷河流是沟谷地貌形成的主要力量,而岩性的软弱、植被的稀疏、降水强度的大小,对沟谷的形成也有促进作用,对谷坡形态的形成也有较大的影响。

沟谷一般比较短小。从纵剖面上看,上游较陡,下游较缓;横截面多成V形。但在水平岩层分布区,水平产状且垂直节理发育的岩层上常形成呈直立状或阶状的沟坡。而较大的沟谷沟头因由集水盆地和沟口,有间歇性洪流堆积物时,经常发育出冲积锥。冲积锥呈半圆锥型,锥顶坡度略大,向下逐渐变缓,分选度和磨圆度都较低,面积一般也不会超出1平方千米。

河谷的发育

河谷地貌的形成以河流作用为主,是一种常见的地貌形态,是在坡面流水和沟谷流水作用下形成的狭长形凹地。

河谷由谷坡和谷底组成。谷坡位于谷底两侧,发育时除受河流的影响外,还受坡面岩性、风化作用、重力作用、坡面流水等因素的影响。谷坡上一般经常发育阶地,但强烈下切的山区河谷不会出现这种情况。谷底的形态各异,如山地河流的谷底就只有河床,而平原、盆地河流的谷底则有河床和河漫滩。

河谷发育初期,河流以下蚀为主,谷地形态多是V形谷和峡谷。接下来的时期侧蚀强烈,凹岸冲刷与凸岸堆积形成连续的河湾和交错山嘴。河湾在向两侧扩展的同时也向下游移动,最后切平山嘴而展宽河谷,谷地发生堆积而形成河漫滩。

河流的下切深度受侵蚀面的影响。海平面是入海河流的基面,湖盆、干支流交汇处、坚硬的岩坎或堤坝也可以成为局部河流或暂时的基面。假如不发生地壳运动或海平面变化,河谷纵剖面比降会因河流的长期下蚀而逐渐变小,而侵蚀作用也将以侧蚀为主,侵蚀作用和堆积作用最终会相对平衡,河谷纵剖面将会成为平滑下凹曲线。但实际情况是,河床中总是深槽和浅滩相间分布的。

河床与河漫滩

深槽与浅滩

冲击性河床中深槽和浅滩是交替出现的,因为水流能量集中的某一河段会发生侵蚀形成深槽,而能量分散的河段则会发生堆积形成浅滩。弯曲河床的深槽位于弯曲段,浅滩位于过渡段,相邻深槽或浅滩的间距大约是河床宽度的5~7倍。

侵蚀性河床中深槽和浅滩的形成受岩性与构造的影响。岩石硬度小或构造作用比较破碎时,容易形成深槽,反之就会形成浅滩。

边滩与河漫滩

弯曲河床的水流在惯性离心力的作用下,形成表流向凹岸、底流向凸岸的横向环流。凹岸及其岸下河床受环流侵蚀而形成深槽,岸坡出现崩塌而后退。侵蚀物被底流带到凸岸形成小边滩。小边滩随河谷的拓宽而不断发展成为大边滩。汛期来临时,河漫滩的相对冲积物覆盖在河床相冲积物上,边滩发展成为河漫滩。

心滩与江心洲

河床横剖面形态不规则时,水流被河床分为两股或多股主流,形成复式环流。在复式环流的作用下,泥沙在江心堆积而形成心滩,当心滩淤积的高度超出水位后,便成了江心洲。江心洲大部分时间是露出水面的,洪汛期时被淹没。此外,入海河流的河口附近,水流受潮流阻滞比较容易形成心滩与江心洲。

三角洲

河流流入海洋或湖泊时,下游的流速逐渐降低,河流中携带的大量泥沙在河口地区的陆上和水下沉积,形成平面形态近似三角形的堆积体,称为三角洲。三角洲又称河口平原,从平面上看像三角形,顶部指向上游,底部是它的外缘。三角洲的面积较大,土层深厚而肥沃,水网密布,地势平坦。

三角洲形成的初期是冲积物在河口堆积,出现一系列水下浅滩、心滩或沙嘴,使水流发生分汊,同时形成向海倾斜的水下三角洲。随着沉积面积的逐渐扩大,水下三角洲的前缘不断向海推进,而堆积高度的增加使其凸出水面,成为水上三角洲。

从平面和剖面上,三角洲的沉积都可以分为三角洲平原、三角洲前缘和前三角洲三带。三角洲平原带是由河流沉积物组成的三角洲陆上沉积部分。三角洲平原的沉积一般包括分汊河床沉积、天然堤沉积、决口扇沉积、河漫滩沉积等。三角洲前缘带呈环状分布,沉积物是分选好、成分纯净的沙质物质,可分为汊流河口沙坝与三角洲前缘席状沙两类。前三角洲带由黏土悬浮物和胶体溶液沉积而成。

按三角洲的形态特征,三角洲可分为四类,分别是鸟足状三角洲、尖头状三角洲、扇形三角洲、多岛型三角洲。

世界主要河流三角洲

密西西比河三角洲:是密西西比河在注入墨西哥湾时沉积而成的,依形态,它属于鸟足状三角洲。鸟足状三角洲一般形成于汊流发育的弱潮河口,形状类似于鸟足,沿线比较曲折。

埃布罗河三角洲:属于尖头状三角洲。尖头状三角洲呈尖头状向海凸出,岸线比较平直,沿岸发育沙嘴或沙堤。

尼罗河三角洲和尼日尔河三角洲:尼罗河三角洲形成于埃及北部的开罗,面积巨大,是埃及首要的耕作区。尼日尔河三角洲位于西非尼日利亚南部,由尼日尔河冲积形成。南濒几内亚湾,北起农河与福尔卡多斯河分流处,西起贝宁河,东达邦尼河。以上两个三角洲都属于扇形三角洲,前缘受海浪作用,岸线圆滑并基本上被沙堤和堡岛封闭。

湄公河三角洲:是发源于中国的澜沧江在越南最南端形成的平原,又称九龙江平原。水稻种植业发达,是越南最富饶的地方,也是越南人口最密集的地方。湄公河三角洲属于多岛型三角洲,主要受潮流作用控制,汊流河口多成喇叭形,口门外有长条状潮流沙坝。

洪积扇与冲积扇

洪积扇是一种扇形堆积地貌,主要形成于干旱、半干旱地区,是季节性或突发性洪流在河流出山口因比降突减、水流分散、水量减少而形成的。

扇顶坡度约为5°~10°,主要组成物质是沙砾,分选度低。扇缘坡度约为1°~2°,主要组成物质多为粉沙、黏土和亚黏土,也有粗粒物质透镜体,分选度较好,并出现近水平层理。扇缘低地常有泉水冒出,形成绿洲。

并列的洪积扇相互连接可以形成面积较大的山麓洪积倾斜平原。气候变化与地壳上升也可使洪积扇遭受切割,形成洪积扇阶地。

冲积扇和洪积扇之间没有明显的界线,主要区别是发育的环境不同,冲积扇由常年径流形成,洪积扇由间歇性洪流形成。

河流阶地

谷底受河流下切的作用力而上升到洪水位以上,且呈阶梯状分布在河谷两侧的地貌称为河流阶地。此外,新构造运动、气候变迁、海平面变化都可能导致阶地的形成。

阶地由阶面和阶坡组成。阶面是原有谷底的遗留部分;阶坡是由河流下切形成的。阶地高度是阶面与河流平水期水面高度的差。高出河漫滩的最低一级阶地称为一级阶地,随高度的增加分别为二级阶地、三级阶地……

按照组成物质和阶地的结构,可将其分为侵蚀阶地、堆积阶地和基座阶地三种类型。

侵蚀阶地由基岩构成,多发育在山区河谷中,阶地面是河流长期侵蚀而成的切平构造面。堆积阶地由冲积物组成,多分布于河流中下游,是在谷地展宽并发生堆积,而后期下切深度没有达到冲积层底部的情形下而形成。基座阶地的形成与堆积阶地相似,区别在于后期下切深度超过冲积层而进入基岩,上部由冲积物组成,下部由基岩组成。

河谷类型

河谷类型包括顺向河谷、次成河谷、逆向河谷、先成河谷和叠置河谷。

顺着原始地面或构造面发育的河谷称为顺向河谷或顺坡河谷,这一类型的河谷有海退后出现的海滨倾斜平原;火山锥、背斜或向斜两翼顺着岩层倾向发育的河谷;沿着斜槽发育的河谷。

顺向河谷形成后,若地面岩层受到破坏,其支流往往沿着背斜两翼或轴部较新的软弱岩层,和构造破碎带发育成次成河谷。次成河谷主要包括背斜谷、单斜谷、断层谷,形成时期往往在顺向河谷之后。

次成河谷继续下蚀,在逆着岩层倾向的斜坡上,就会发育一些与岩层倾斜方向相反的河流,形成逆向河谷。

某条已经形成的河流流域内,局部发生地壳上升运动,而河流下蚀速度超过地壳上升速度,所以河流仍能保持原来的流路。因这种河谷的发育早于隆起构造,被称为先成河谷。

有的基岩面上有松散的堆积物,河流先在其上面流动,受因流域内地壳上升的影响,河流不断下切,并基本保持原来的流路切入基岩中,这种与地质构造不相符的河谷就是叠置河谷。

河流劫夺

河流劫夺是一条河流溯源侵蚀导致分水岭外移,以致占据相邻河流流域的过程。侵蚀基面高低差异,分水岭距局部基面远近不同,分水岭两侧岩性、构造和地貌特征不一致等因素都可引发溯源侵蚀差异和分水岭移动,从而产生河流劫夺。

分水岭在河流劫夺中起重要作用。可作两条河流或水系间分水岭的地貌有很多,包括山脊、高原、平原、丘陵、冰川,甚至还可以是洪积扇。青藏高原是太平洋、印度洋与亚洲内陆水系的分水岭;华北平原上有海河各支流的分水岭;额尔齐斯河与乌伦古河的河间地是北冰洋水系与亚洲中部内陆水系的分水岭。

河流因分水岭外移发生劫夺后,劫夺点附近的谷地走向定会发生急剧的转折,形成劫夺湾;劫夺点还常形成急流;谷地也会因强烈下切而发育成阶地或形成谷中谷。因被夺河上游改道,因此下游便成为失去源头的断头河,被夺河原有谷地的一部分则成为劫夺河与断头河的分水岭,即“风口”。

准平原与山麓面

准平原是在湿润气候条件下,地表在长期风化和流水作用下形成的接近平原的地貌形态。准平原发育初期的原始地面比较平缓;之后因构造上升而形成V形谷或峡谷,分水岭宽平;然后谷地的侧蚀加强,河谷展宽,分水岭被切割成尖锐的山岭;随着不断接受侧蚀作用,地表开始形成宽广的谷底平原,谷间分水岭降低、变缓,上凸下凹;最后地面近似平原,在少数地段存在着低矮孤立的残丘。准平原是一种大规模夷平面,也可能会因构造上升而成为高原或发生变形,也可能会在被切割后仅保存于山岭顶部成为峰顶面。

在干旱、半干旱气候条件下,坡面洪流不断搬运风化碎屑导致山坡大体保持原有坡面平行后退,随着山体的逐渐缩小,山麓处逐渐形成大片的基岩夷平地面,被称为山麓面。山麓面上有呈孤立岛状的被分割的山丘。山麓面与岛状山地貌组合是地貌在相对稳定情况下,受干燥剥蚀作用而形成的晚期地貌特征。东疆噶顺戈壁、阿尔金山南麓都有山麓面与岛状山相结合的地貌。当地壳发生间歇性上升运动时,山麓面将会抬升成为山前梯地。

喀斯特地貌

喀斯特地貌的特点

喀斯特地貌,也叫岩溶地貌,指的是地表的石灰岩等其他碳酸盐类的岩石受到水和二氧化碳的溶解作用以后形成的地貌特征。喀斯特地貌最早是在亚得里亚海边的喀斯特地区发现的。

岩溶发育的地区往往会形成奇峰耸立、怪石嶙峋的地质景观。地表上的岩溶地貌常有石林、峰丛、溶沟、漏斗、落水洞、溶蚀洼地等;而地下则发育着地下河、溶洞等。溶洞中一般都有多姿多彩的石笋、石柱、石钟乳等,景象奇特而优美。

我国是世界上岩溶地貌分布广泛的国家之一,我国的碳酸盐类岩石分布面积约为130万平方千米,约占全国陆域总面积的1/7。我国的广西、贵州、云南等地石灰岩分布广泛,岩溶地貌发育完整,形成闻名世界的风景区。风景如画的桂林山水以及优美壮观的云南路南石林就是岩溶地貌的典型代表。

20世纪80年代以来,我国又在石灰岩地区发现了大型的溶洞,洞内的钟乳石、石笋、石柱等岩溶沉积物数不胜数,十分壮观,现在多处已经被开辟为著名的风景区。如广东的凌霄岩、浙江的瑶琳洞、江苏的善卷洞、江西的龙宫洞、北京的石花洞等等。

石灰岩洞因水的侵蚀作用而形成。

地表喀斯特地貌

溶沟与石芽

溶沟由地表水沿岩石裂隙溶蚀、侵蚀而成,底部常充填泥土或碎屑。石芽是蚀余产物,热带厚层纯石灰岩上发育的石芽常高达数十米,被称为石林。

喀斯特漏斗

由流水沿裂隙溶蚀而成,呈碟形或倒锥形洼地,底部有垂直裂隙或落水洞,宽几十米,深数米至十几米。

落水洞

也是流水沿裂隙溶蚀而成,多分布在较陡的坡地两侧、盆地、洼地底部,宽一般不会超过10米,深度达数十米至数百米,我国广西、重庆及川南地区称之为“天坑”。

溶蚀洼地

一般由喀斯特漏斗扩大或合并而成,具有封闭性,面积小于10平方千米。

喀斯特盆地与喀斯特平原

喀斯特盆地是一种大型的喀斯特洼地,边缘略陡并发育有峰林,底部平坦并且覆盖着残留红土,多分布在地壳相对稳定的地区。喀斯特盆地继续扩大就形成喀斯特平原。

峰丛、峰林与孤峰

峰丛是同一基座而峰顶分离的碳酸盐岩石峰,经常与洼地组合成峰丛-洼地地貌。峰林一般由峰丛发展而成,是分散的碳酸盐岩山峰,受构造和气候条件的影响很大。孤峰是峰林发育晚期残存的孤立山峰,常分布在喀斯特盆地底部或喀斯特平原上。

地下喀斯特地貌

溶洞与地下河

地下水沿岩石裂隙或落水洞向下运动并溶蚀岩石,进而形成形态各异的管道或洞穴,它们相互沟通、合并而形成了统一的地下水位。但如果地壳上升,地下水位就会随着河流的下切而降低,溶洞就成为干溶洞。但其顶部裂隙渗出的地下水中的碳酸钙沉积,因温度升高、压力减小、水分蒸发而沉淀,形成了由洞顶向下生长的石钟乳。由石钟乳滴下的水在洞底因碳酸钙沉积而形成石笋。石笋与石钟乳相接就是石柱。它们的形态各异,常被人赋予神话传说。

水平溶洞发育大多与当地侵蚀基面相适应,因此阶地或河面与其相比,可知构造上升的高度。而垂直溶洞的深度可达数百至数千米,可看作是地壳上升的标志之一。

暗湖

暗湖也称“地下湖”,是在可溶岩体内,由岩溶作用形成的、具有较大的空间集聚地下水的湖泊,一般与暗河相连通。有的暗湖是在暗河的基础上局部扩大而成的。暗湖有储存和调节地下水的作用,如云南六郎洞。

喀斯特地貌的地域分异

热带湿润气候的喀斯特地貌

热带湿润气候条件下,水中含有大量的二氧化碳和有机酸,地上、地下的岩溶作用都很强烈,广泛发育溶蚀洼地、喀斯特盆地、喀斯特平原、峰林等喀斯特地貌。

亚热带季风气候的喀斯特地貌

亚热带季风气候是地带性热量条件与非地带性降水条件相结合的产物。这种气候条件下,岩溶作用仍然强烈,但地貌类型主要是喀斯特丘陵和溶蚀洼地。

温带季风气候的喀斯特地貌

温带季风气候对地下喀斯特地貌的发育非常有利,干旱地区富含硫酸盐的地下水尤其利于地下喀斯特地貌的发育。

寒带和高原寒冷气候的喀斯特地貌

寒带和高原寒冷气候条件下,水中二氧化碳的含量很高,但因常年冻土,阻碍了地表水的渗透,只能发育小型溶沟和浅洼地。有些冻土层下也能形成溶洞。

冰川地貌和冻土地貌

冰川作用

冰川作用包括侵蚀作用、搬运作用与堆积作用。

冰川运动由可塑带的流动和底部的滑动组成,其中冰川滑动是侵蚀产生的根本原因。冰岛的冰源河流含沙量是非冰川河流的5倍,侵蚀力是一般河流的10~20倍。因此冰川是一股强大的侵蚀力量,冰内尤其是冰川底部所含的岩石碎块对地表的侵蚀作用尤其强烈。冰川滑动过程中,不断锉磨冰川床的作用称为刨蚀作用。冰川下因节理发育而松动的岩块的凸出部分,与冰冻结在一起,冰川移动时把岩块拔出带走的作用就是拔蚀作用。因侵蚀作用而形成的地貌有冰斗、刃脊、角峰、U形谷、石洼地、峡湾、羊背石等。

冰川侵蚀作用中产生的大量碎屑,会进入冰川系统,随冰川一起运动,这就是冰川的搬运作用。冰川的搬运作用很强。大陆冰川可以把大片的基岩搬运到别处,如波罗的海南部平原上就有由冰川从另一岸搬运来的巨大岩块。山岳冰川的搬运能力也不小,喜马拉雅山中就有重量过万吨的大漂砾。

冰川搬运的物质按照在冰川内的位置可分为:表碛、内碛、底碛、侧碛、中碛、终碛、后退碛、漂石。搬运过程中,被抛出的物质还会发生堆积作用,形成冰碛丘陵、侧碛堤、终碛堤、冰水扇、冰砾埠、冰水湖等地貌。

冰蚀地貌

典型的冰蚀地貌包括冰斗、槽谷、峡湾、刀脊、角峰、羊背石、卷毛岩、冰川磨光面、悬谷、冰川三角面等。

冰斗是一种三面环有陡峭岩壁、呈半圆形或圈椅状的洼地。雪线附近山坡下凹部分多年积雪斑边缘的岩石,因频繁受冻融作用而崩解为岩屑,被搬运至低处后,积雪斑后缘变陡,雪斑下的地面逐渐蚀低为洼地,形成雪蚀洼地。积雪演化为冰川后,对底床的刨蚀作用使洼地变深,并在前方造成坡向相反的岩槛,同时后缘陡壁受冰川拔蚀作用而后退变高,形成冰斗。

冰斗因分布位置不同可分为谷源冰斗和谷坡冰斗。方向相反且相邻的谷源冰斗壁后退可形成极为尖峭的角峰。谷坡冰斗壁后退则常使山脊的形状锋锐,形成刀脊。

移动的冰川

槽谷是冰川过量下蚀、展宽而成的典型冰川谷,两侧通常有平坦谷肩,横剖面近似U形。U形谷底的岩层较软处形成冰盆,坚硬岩层则形成冰槛。峡湾是冰川槽谷的一种特殊形式,是在大陆冰流、岛屿冰盖或山谷冰川入海处,由冰床蚀低、冰川消亡而成的。U形谷谷坡上的支冰川的侵蚀能力远小于主冰川,因此谷底常比主谷高几十米至一二百米,这类谷地被称为冰川悬谷。

另外,槽谷底部较硬的岩石表面,在冰川运动过程中因受冰体挟带砾石的摩擦而布满平行擦痕,形成冰川磨光面。特别坚硬的岩石则形成羊背石。

冰碛地貌

冰川消融后,表碛、内碛、中碛都沉入冰川谷底,受到谷底地形的影响,与底碛堆积成坡状起伏的冰碛丘陵。与山岳冰川相比,大陆冰川区的冰碛丘陵规模较大。

侧碛堤。侧碛堤位于冰川谷两侧,呈堤状向冰川上游延伸,可一直到雪线附近,是由侧碛和表碛在冰川后退处共同堆积而成的。

终碛堤。当冰川的补给和消融处于平衡状态时,冰川的末端可长时间停留在同一位置,此时由冰川搬运来的物质在冰川尾端堆积成弧状的终碛堤。山岳冰川的终碛堤较高,长度较小,弧形曲率较大。大陆冰川则正好相反,终碛堤高度较小,但长度可达数百千米,弧形曲率较小。

鼓丘。通常认为鼓丘是因冰川的搬运能力减弱,冰碛遇到阻碍堆积而成的。形状近似于椭圆形,长轴与水流方向一致,迎冰面较陡,背冰面较缓。主要分布在大陆冰川终碛堤几千米到几十千米以内,常成群出现,造成鼓丘田。山岳冰川的鼓丘数量较少。

冰水堆积地貌

冰水扇和冰水河谷沉积平原

冰融水所携带的大量砂砾从冰舌末端排出后,在终碛堤的外围堆积成扇形地,称为冰水扇,可绵延数千米。几个冰水扇相连就可形成广阔的冰水冲积平原。此类平原在山谷中就形成河谷冲积平原。

季候泥

季候泥是冰水湖泊中的沉积物,粗细及颜色深浅差别较大,比较容易辨认。冰水湖有明显的季节变化,夏季水量较大,大量物质被冲入湖泊,其中较粗的颗粒快速沉积,沉积物颜色较淡;而冬季水量较小,这时长期悬浮的细颗粒黏土开始沉积,沉积物颜色较深。

冰砾埠与冰砾埠阶地

冰砾埠原是冰川表面的洼地,底部是冰水沙砾沉积物,冰川消融后,冰面穴隙上的沉积物沉到底床堆积成形状不规则、呈层状的丘陵地貌,表层通常有一层薄冰碛。冰砾埠阶地是冰川两侧的水道堆积的冰水沙砾物质在冰川退缩后形成于谷坡上的阶地,只存在于山岳冰川中。

锅穴

冰水冲积平原上因残冰融化引起地表下陷而形成的圆形洼地就是锅穴,直径从数米到数十米不等。

蛇形丘

蛇形丘是大陆冰盖下封闭水道中的沙砾物质组成的狭长曲折的高地,呈蛇形弯曲,两壁陡直,丘顶狭窄,延伸的方向与冰川流向大体一致,主要分布在大陆冰川区。

冰面地貌

冰瀑与冰裂隙

山谷冰川经冰斗或粒雪盆进入U形谷时,受冰床坡度陡峻和温度的影响,通常会形成冰瀑。

冰川运动过程中,冰瀑、冰舌上的冰层受压力作用可发育成宽数十厘米至数十米的冰裂隙。冰裂隙的种类有横裂隙、纵裂隙、斜裂隙、边缘裂隙等。

冰川弧拱

冰川表面运动的速度存在一定的差异,使得同一冰层形成中央靠前、两侧靠后的前凸弧拱构造,称为冰川弧拱。

冰面河与冰面湖

冰面融水积聚于冰川表面的洼地就形成了冰面湖。有的是由充满水的洞穴和隧道的顶部塌陷而成的,有的是由冰川低陷处积水而成的,也有的是地面各积水潭融合而成的。冰面湖切割冰面就会形成冰面河。

冰蘑菇和冰塔林

冰川末端消融差异而残留的塔状冰体,称为冰塔。成群出现的冰塔就称为冰塔林。

冰川周围嶙峋的角峰上有较大体积的岩块落下,覆盖在冰川上时遮住了太阳,使其下部的冰不能融化,由此形成盖有岩块的孤立冰柱——冰蘑菇。它是冰川地区的一种特殊地貌。

冻土地貌

石海与石河

石海是基岩在剧烈冻融崩解后产生的、就地堆积在平坦地面上的一大片巨石角砾。石海整体运动时就变成了石河。当山坡上冻融崩解的碎屑填满凹槽或沟谷时,岩块就会顺着湿润的碎屑垫面或多面冻土层顶面产生整体运动。石河的运动速度一般每年不到2米。

构造土

构造土是多年冻土地面松散物质因冻裂和冻融分选形成的、具有一定几何形态的沉积构造和各种微地貌。几何形态多呈环形和多边形。按组成物质与作用性质的差别,构造土可以分为泥质构造土和石质构造土。泥质构造土是多边形土,石质构造土的典型是石环。

冻胀丘

地下水受冻结地面或多年冻土层的阻碍,无法流出地表,在比较薄弱的地带冻结膨胀,致使地表隆起,称为冻胀丘。冻胀丘呈圆形或椭圆形,顶部扁平,周边的坡度很陡。冻胀丘有一年生和多年生两类。

冰锥

冰锥是寒冷季节流出封冻地表或冰面的地下水或河水冻结后形成的丘状隆起冰体。冰锥一般是一年生,主要发展时期是1~4月,8~9月完全消失。

热融地貌

热融地貌是由热融作用产生的地貌,热融作用主要有热融滑塌和热融沉陷两种。热融滑塌的地形开始为新月形,后逐渐发展成长条形、分叉形等。热融沉陷形成的地貌主要有沉陷漏斗、浅洼地、沉陷盆地等。

风沙地貌与黄土地貌

风沙作用

风沙作用包括风蚀作用、搬运作用、风积作用。

风蚀作用包括吹蚀和磨蚀两方面。吹蚀是由风压力与气流紊动而引起的沙粒吹扬。但是只有当风力达到可使沙粒移动的临界速度时才能发生吹蚀。引起吹蚀的风叫做起沙风,其风速受地表起伏、沙粒含水量高低及沙粒大小的影响。起沙风不仅可对地面进行吹蚀,更主要的是还会产生磨蚀。磨蚀可使砾石表面形成风棱,甚至可深入岩石孔隙发生旋磨,形成风蚀龛、风蚀穴等特殊的地貌,还会使石柱基部变细而成蘑菇状。

风的搬运作用主要通过风沙流(挟带沙粒的气流运动)来实现。绝大部分的沙粒在离地面30厘米以内,10厘米以内更是占大多数,并分别以悬移、跃移和表层蠕动的形式移动。其中跃移的沙粒约占75%,而悬移沙粒只有1%~5%。当风速显著超过起沙风时,搬运沙粒的数量将会急剧增加。

风力减弱或风沙流遇阻时,风中挟带的沙粒沉积到地面的现象就是风积作用。风积物质主要是风成沙和风成黄土两类。风成沙的粒度均匀、分选好、磨圆度高,矿物成分因地而异,堆积形态是各种沙丘。

风蚀地貌

风棱石与石窝

戈壁砾石的迎风面经长期风蚀后被磨光、磨平,在瞬时大风中发生移动,迎风面发生变化,并经风蚀再次被磨平,两个或多个迎风面之间就会形成风棱。按风棱的数量,风棱石可分为单棱石、三棱石、多棱石。

石窝是一种直径20厘米~2米、深10厘米~1米的圆形或椭圆形小洞或凹坑,由风沙旋磨岩石裂隙而成。迎风崖壁上经常出现,密集时像蜂窝。

风蚀柱与风蚀蘑菇

垂直或水平裂隙较发育的裸露基岩在风的长期吹蚀下,形成孤立的风蚀柱。在进一步磨蚀基部的情况下形成风蚀蘑菇。

风蚀洼地与风蚀盆地

风蚀洼地是风吹蚀地面松散物质形成的、直径在10~100米之间、深约1米的洼地,平面呈圆形或马蹄形。遇到坚硬的岩石或进地下水水位时,洼地加深受阻,因此风蚀洼地通常很浅。

而风蚀盆地的面积就很大,南非、埃及、利比亚等国家都有面积超过100平方千米的风蚀盆地。

风蚀残丘

风侵蚀年轻而相对坚固的沉积物时,可形成宽窄不一、底部崎岖不平、走向多与盛行风向平行的谷地,称为风蚀谷。风蚀残丘就是几个风蚀谷之间的残留高地或孤立丘岗。

雅丹地貌

雅丹地貌泛指干燥地区的一种风蚀地貌,是由河湖相土状沉积物形成的地面经风化、风蚀、间歇性流水冲刷作用后,形成的与盛行风向相同并相间排列的风蚀土墩和风蚀凹地(沟槽)地貌的组合。我国新疆罗布泊东北发育着很典型的雅丹地貌。

雅丹地貌的类型包括三种。以风蚀作用为主的雅丹地貌,分布于离山地较远的平原,因山地降水形成的洪水无法到达这里,所以风力是主要作用;以流水侵蚀作用为主的雅丹地貌,分布于邻近山地的地区,如阿奇克谷地东段的三陇沙雅丹;风、水共同作用的雅丹地貌,处于上述两类雅丹地貌之间,如白龙堆雅丹、龙城雅丹。

雅丹地貌形态各异,但形成过程基本相似。形成的第一步是地表遭到风化破坏,然后在风蚀和水流侵蚀的双重作用下,堆积在地表的泥岩层间的疏松沙层,被搬运到了远处,这使原本平坦的地表变得起伏不平、凹凸相间,雅丹地貌的雏形形成。之后,在风力、流水等作用下,洼地进一步加深、扩大,有泥岩层保护的外露部分较稳定,但疏松沙层受到侵蚀,地面呈现出各种形态,雅丹地貌最后形成。

丹霞地貌

丹霞地貌指的是由红色砂岩、砾岩等组成的各种特殊地貌的总称,是岩石地貌类型之一。丹霞地貌的地形构造独特而稀少,它一般发育在厚厚的红色砾岩、砂岩地区,这种岩石透水性特别强,在流水等外力作用下,形成方山、台地、峰林等各种地表形态,远看就像是披着一层红色的轻纱一般,泛着红光,犹如“丹霞”。以我国广东省仁化县境内的丹霞山最为典型,因此命名为丹霞地貌。

丹霞地貌最显著的特点就是有广泛的“赤壁丹崖”发育,形成了顶平、身陡、山麓平缓的石墙、石柱、石峰等奇险的形态。

世界上的丹霞地貌主要分布在中国、美国西部、中欧及澳大利亚等地,其中我国的分布面积最广。我国广东丹霞山的面积最大,约为280平方千米,发育最为典型,类型最齐全、风景最优美、形态最丰富,被人誉为是“中国的红石公园”。

丹霞地貌区一般情况下奇峰林立,景色诱人,具有丰富的旅游资源,我国的一些丹霞地貌区早已被开辟为旅游风景区,如丹霞山、金鸡岭、武夷山等。我国河北承德丹霞地貌区的红砾岩已经有1亿多年的历史,经过各种外力作用,如今这里已经形成了各种形态的石峰和石山,这在北方地区尤为罕见。

风积地貌

风积地貌主要指各种沙丘。按形态和与风向的关系来看,沙丘可分成横向沙丘、纵向沙丘、多风向形成的沙丘三种基本类型。

横向沙丘的走向与合成起沙风风向垂直或交角不小于60°,主要类型有新月形沙丘、新月形沙丘链和复合新月形沙丘链。新月形沙丘一般是在单风向作用下由沙堆演变而来的,呈新月形,弧形凸向主风向,迎风坡缓,背风坡陡。两个或两个以上的新月形沙丘相连就形成新月形沙丘链。巨大沙丘链上,叠置小型新月形沙丘则称为复合新月形沙丘链。

纵向沙丘的走向与合成起沙风风风向平行或交角小于30°,也称为“沙垄”。沙丘纵向丘脊线常有起伏,横剖面基本对称,而迎风坡和背风坡的差别比较明显。

和海洋中的波浪一样,沙丘也

多风向形成的沙丘主要有金字塔沙丘、蜂窝状沙丘、格状沙丘、星状沙丘、反向沙丘等。

沙丘移动是沙丘表面沙粒从迎风坡被吹扬到背风坡的过程。沙丘移动的速度与输沙量成正比,与沙丘高度成反比,与风速的三次方成正比。沙丘移动速度还受植被、沙丘水分、地表起伏等因素的影响,如植被可减小风速,干燥的风沙只需要较小的起沙风等。

沙漠

沙漠也是荒漠的一种,它指的是沙质的荒漠,是荒漠中分布最广、占地面积最大的一种。沙漠的地面上全都覆盖着流沙,这里风力作用强劲,沙丘广布,形成了各种类型的风蚀地貌和风积地貌。

沙漠主要的形成原因有两点:气候干旱;沙石来源丰富。沙漠中的沙石大多分布在沉积物很多的山间内陆盆地中,或者是一些剥蚀高原的洼地和平地上。沙漠上的沙石有很多来自古代或者是现代的各种沉积物中。如我国的塔克拉玛干沙漠的砂石来自古河流冲积物;腾格里沙漠、毛乌素沙漠的大部分沙石都来源于古代和现代的冲积物和湖积物中;塔里木河中游和库尔勒西南滑干河下游的沙漠都来自现代河流冲积物;鄂尔多斯中西部高地上的沙丘来源于基岩风化的残积物。

沙漠在世界上有很广阔的分布,沙漠的面积占全球陆地总面积的1/10。沙漠主要分布于北非、西南亚、中亚等地区。我国的沙漠面积约有64万平方千米,约占国土总面积的7.4%,较大的有塔克拉玛干沙漠、毛乌素沙漠等。

黄土地貌

黄土地貌包括两种,一种是黄土沟谷地貌,一种是黄土沟间地地貌。

黄土沟谷地貌。根据形态特征,可将黄土沟分为细沟、浅沟、切沟、冲沟和河沟。这几种类型的黄土沟是依次形成的。细沟由坡面细流冲刷而成;浅沟由较大坡面股流冲刷而成,深度不到1米;切沟深数米,纵剖面起伏大;切沟进一步发展而成为冲沟,纵剖面上陡下缓;冲沟停止下切,谷坡侧蚀就形成了河沟,河沟纵剖面较缓,侧蚀作用强,常年有流水。

黄土沟间地地貌的典型类型是塬、梁、峁。塬是由沟谷、河谷环绕的平坦高地,边缘极为曲折,经常受沟谷溯源侵蚀而被肢解。我国最大的黄土塬是甘肃的董志塬,面积约2000平方千米。陕北洛川塬的面积也较大。面积在10平方千米以下的塬称为残塬。梁属于黄土丘陵地貌,呈长条形,顶部为残塬的是塬梁,顶部较平坦的是平顶梁。峁呈馒头状,是顶部浑圆上凸、斜坡较陡的黄土小丘,其边缘可发育大量辐散状沟谷。所有黄土沟间地地貌都容易形成陷穴、崩塌和滑坡。

海岸地貌与海底地貌

海岸地貌

海岸地貌包括海蚀地貌和海积地貌两种。海蚀地貌是海岸线在海蚀作用下形成的地貌。海蚀作用包括波浪对海岸的撞击、冲刷,对波浪挟带碎屑物质的研磨,以及海水对海岸带基岩的溶蚀。海蚀地貌的主要类型包括:海蚀穴,潮汐高潮面的波浪将海滨陆地冲淘成的槽形凹穴,沿海岸线分布;海蚀崖,海蚀穴不断扩大,导致顶部基岩崩塌而形成的陡壁;海蚀拱桥,两个方向相反的海蚀穴被蚀穿,而相互连通;海蚀柱,海蚀崖后退过程中残留的柱状岩体;海蚀台,在崖壁上不断形成海蚀穴和崩塌过程中形成。

海积地貌是由海滨沉积物堆积而成的。海滨沉积物是海岸的松散物质,如河流冲积物、贝壳、生物残骸等,在波浪变形作用力推动下移动,被进一步研磨、分选沉积而成。以横向移动为主的海积地貌主要有侵蚀凹地、海滩、滨岸堤(沿岸堤)、水下堆积台、离岸坝、泻湖等;以纵向移动为主的海积地貌主要有沙嘴、泥滩、草滩、岛沙坝等。

岩岸与沙岸

岩岸按海岸带地貌特征可分为以下几种:

①里亚式海岸:海水淹没与海岸直交的谷地,典型地貌是西班牙的里亚地区。

②达尔提亚式海岸:海水淹没与海岸平行的谷地,典型地貌是亚得里亚海的达尔提亚海岸。

③峡湾海岸:海水淹没山地古冰川U形谷,挪威西岸的地貌最为典型。

④断层海岸:沿断层分布,岸线平直,如中国台湾东岸。

⑤喀斯特海岸:海水淹没海岸的喀斯特山地,如我国大连市黑石礁一带。

沙岸大部分是平原海岸,主要有分布在河流入海三角洲海岸,淤泥堆积平原海岸,沿岸有澙湖分布的澙湖岸,海水淹没平原河口形成的溺谷海岸,溺谷经潮流和波浪的强烈冲刷而扩展成的三角湾海岸。另外,低纬度海区还分布着珊瑚礁海岸和红树林泥滩海岸。

我国沿海的构造地貌排列方式多样,因此海岸类型相当复杂,平原海岸主要有淤泥堆积平原海岸、三角洲海岸、三角湾海岸等。

海岸线

海岸线是指海水面与陆地面的分界线,事实上陆地与海洋是以海岸为界的,而海岸的延长线就是海岸线。由于海水的涨落和风引起的海水运动,海岸线会经常移动,通常我们在某一时间内看到的海岸线只是暂时的,不稳定的,海岸线一直处于变化之中,因此我们不能简单地将它当作是某一条线。通常人们把多年平均高涨时海水到达的界限,当作是海岸线。

在地质史上,由于地壳运动以及大范围的气候变迁,海岸线有过大范围的变化。科学研究表明,在距今约7万年到2万年的时期内,海水一直处于下降的趋势,因此当时的海面比现在的约低100多米。正因为此,当时的海陆分布和海岸线的位置与现在的完全不同。当时我国东部的黄海海底大部分都是陆地,而我国的大陆和台湾岛、海南岛及日本、朝鲜还是连在一起的。

海岸线从古至今一直处于变化之中,因此有古海岸线与现代海岸线之分。通常海岸的类型不同,海岸线也就不同,有的海岸线蜿蜒曲折,有的则十分平直。一般在山地海岸地区,海水长期侵蚀岸边的山地和丘陵,所以形成了许多陡峭的崖壁,这里的海岸线一般比较曲折,水深湾长,多天然良港。平原地区,地面辽阔坦荡,海岸平直,海水比较浅,海岸线也比较直,可以建立盐场、渔场等。

海底地貌

海水覆盖下的固体地球表面形态统称为海底地貌。海底地貌多种多样,有高耸的海山、绵延的海岭、深邃的海沟,也有坦荡的深海平原。其中,纵贯大洋中部的大洋中脊,绵延约8万多千米,宽约数百至数千千米,总面积能与全球的大陆面积相比。大洋最深点位于太平洋的马里亚纳海沟,深为11034米,超过了陆地上最高的珠穆朗玛峰。

整个海底的地貌可分为大陆边缘、大洋盆地和大洋中脊三大基本单元,以及许多次一级的地貌单元。

大陆边缘

大陆边缘是大陆和大洋两大台阶面之间的过渡地带,它约占海洋面积的22%。通常又将它分为大西洋型大陆边缘和太平洋型大陆边缘。大西洋型大陆边缘一般由大陆架、大陆坡、大陆隆三个地形单元组成,地形平缓而宽阔,多处于大西洋、印度洋、北冰洋和南大洋的周边地带。太平洋型大陆边缘的大陆架比较狭窄,陆坡陡峭,大陆隆一般被海沟代替,它也可分为两类,即海沟—岛弧—边缘盆地系列和海沟直逼陆缘的安第斯型大陆边缘,主要分布在太平洋的周边地带。

大洋盆地

大洋盆地一般位于大洋中脊和大陆边缘之间,它的一侧和大洋中脊平缓坡麓衔接在一起,另一侧则与大陆隆或海沟相邻,约占海洋总面积的45%。大洋盆地被海岭等正向地形分割,构成若干外形略呈等轴状,水深约在4000~5000米左右的海底洼地,称海盆。宽度较大、两坡较缓的长条状海底洼地,叫海槽。海盆底部发育深海平原、深海丘陵等地形。长条状的海底高地称海岭或海脊,宽缓的海底高地称为海隆,顶面平坦、四周边坡较陡的海底高地称海台。

海底地貌

大洋中脊

大洋中脊是地球上最长最宽的环球海洋山系,约占海洋总面积的33%。大洋中脊可分为脊顶区和脊翼区。脊顶区由一些近乎平行的岭脊和谷地相间组成。脊顶为新生洋壳,上覆沉积物极薄或缺失,地形十分崎岖。脊翼区随洋壳年龄增大和沉积层加厚,岭脊和谷地间的高差逐渐减小,有的谷地可被沉积物充填成台阶状,远离脊顶的翼部可出现较平滑的地形。

大陆架

大陆架是大陆向海洋自然延伸的一部分,它的范围是指从海岸低潮线起,海底以非常平缓的坡度向海洋方向倾斜延伸,一直到坡度发生显著大转折处停止。世界上大陆架的总面积约为2710万平方千米,占全球面积的5.3%,约占海洋总面积的7.5%,几乎所有的大陆岸外都有大陆架发育。大陆架地区的地形十分平坦,但偶尔也有起伏不大的丘陵、盆地和山谷等地貌。

大陆架的显著特征是地质构造上与大陆保持一致,坡度平缓、水深比较浅、资源十分丰富。通常情况下,大陆架内的海水深度不超过200米,河床的坡度不超过1/10度。

大陆架地区蕴藏着丰富的石油、天然气、以及其他各类矿产资源,其中世界上20%的石油产量来源于大陆架。同时,大陆架海域中的海洋资源也十分丰富,种类繁多,世界上90%的捕鱼量都来源于大陆架上的水域。

大陆架所属问题

国际法认为大陆架是邻接一国海岸的,但在领海以外一定区域内的海床和底土。沿海的国家有权为了勘探和开采大陆架上的自然资源而对它行使主权。

大陆架在1945年9月才正式成为一个法律概念,当时美国总统杜鲁门发表了《大陆架宣言》,历史上称为《杜鲁门公告》。因此,美国率先将地质学上的“大陆架”引到了海洋法的范畴之中,这被认为是二战后世界性分割海洋的开始。1958年联合国第一次海洋法会议上通过的《大陆架公约》,对大陆架作出了新的规定。1982年通过的《联合国海洋公约法》对以前的规定作了新的修改。最终,200米的海水深度和据大陆边外缘200海里的距离成为大陆架法律规定的范围,而在这一范围中,大陆架所属的国家可以在这里行使主权。

大陆坡

大陆坡是大陆架外缘向深海方向急剧变化的海底部分,它介于大陆架和大洋海底之间,属于大陆架的一部分,一头连接着陆地,一头连接着海洋,是海陆的桥梁。大陆坡的上界水深多在100~200米,下界水深渐渐变深,一般在1500~3500米。大陆坡的宽度一般在20~100千米以上,全球的大陆坡总面积为2870万平方千米,占全球总面积的5.6%。大陆坡的坡度平均为3°~6°,1800米深度以上的大陆坡平均坡度为4°17′。

大陆坡地壳上层的岩石一般属于花岗岩,属于大陆性地壳,只有少部分属于过渡性地壳;而大陆坡坡脚以外的地壳属于大洋地壳,通常以玄武岩为主,由此可见大陆坡坡脚是大陆地壳和大洋地壳的分界处。大陆坡通常隐藏在深水地区,因此很少受到破坏,基本保持着古大陆破裂时的原始形态。

大陆坡的表面极不平整,通常上面分布着许多巨大而幽深的海底峡谷。海底峡谷一般都横切在大陆坡上,有的像树枝一样分叉分布,将大陆坡切割得支离破碎。大陆坡的表面有时也有比较平坦的地方,这些平坦的地带被人们称为深海平台,有时候,一条大陆坡上分布着多级深度不同的大陆平台。

深海平原

深海的底部也有如同陆地平原一样的地貌,通常被人们称为深海平原,又称为深海盆地。深海平原一般位于水深约3000~6000米的海底。它的面积比较大,通常可以延伸到几千平方千米,底部表面一般较平整,有的向一定方向倾斜,有的则略有起伏,坡度一般为1/1000~1/10000度。

深海平原上大多都有厚厚的沉积物,沉积物的平均厚度约为1千米,这些厚厚的沉积物主要来自大陆架,它被海流沿斜坡向下一直搬运到了地势低洼的地方,将原来比较复杂的原始地貌掩盖了起来。

世界上的各个大洋都有深海平原的分布,其中大西洋是深海平原最多的海洋。这是因为大西洋的陆源沉积物比较丰富,而且边缘没有海沟阻隔,为海底平原的形成提供了有利的条件。太平洋有许多海沟,所以海底的深海平原就十分少见,仅仅在东北部地区有所分布。深海平原一般常见于大陆坡向海的一侧,终止于深海丘陵向陆的一侧。在有海槽存在的海域里,常有槽底深海平原存在,而在海槽向海的一侧则缺少深海平原。深海平原大多都在海沟出现的地方突然中止。

海沟

海沟是海底最壮观的地貌之一,同时也是海洋最深的地方,但是它并不位于海洋的中心,大多分布在大洋的边缘地区。海沟是海洋板块和大陆板块相互作用的结果,一般情况下,海沟的剖面形状就像是英文字母的“V”字,但是两边并不对称,往往靠大洋的一侧比较平缓,靠大陆的一侧比较陡峭。

世界大洋中共有30多条海沟,其中最主要的海沟有17条,这17条海沟中有14条属于太平洋,而且大都集中在西侧;大西洋只有两条,而印度洋只有一条。

海沟的深度一般都大于6000米,世界上最深的海沟为马里亚纳海沟,位于太平洋西侧,据测它的最深点查林杰深渊的最大深度为11034米。一般情况下,海沟的长度不一,几百千米到几千千米不等。世界最长的海沟是印度洋中的爪哇海沟,长达4500千米。有些人还把智利海沟和秘鲁海沟合二为一,称为秘鲁—智利海沟,长度达5900千米。据调查这两条海沟虽然靠的很近,但是仍没有连在一起。海沟的宽度一般在40~120千米,全球最宽的海沟是太平洋西北部的千岛海沟,平均宽度约为120千米。

近年来,科学家们还认为到海沟和地震有关系,环太平洋火山地震一般都发生在海沟附近。这是因为海沟区的重力值一般要比正常值低,因此海沟下面的岩石圈在巨大的压力作用下,被逼着向下沉。

海底沉积物

海底沉积物包括近海沉积和远海沉积两种。

近海沉积主要指大陆架上的沉积,分为机械沉积、化学沉积、生物沉积。机械沉积主要是河流、海浪和风搬运来的陆源物质,以中细颗粒和泥质为主,很少有粗大的砾石,并有一定分选,越远离大陆,沉积物的颗粒越细。近海的光热条件较好,有大量的浮游生物和底栖生物,种类多、数量大、繁殖快。生物的遗体一部分混入机械沉积,一部分聚集形成单独的生物沉积,并固结为石灰质砂岩、泥灰、石灰岩。河流为近海带来大量溶解物质,当溶解物质饱和后,便开始结晶,形成化学沉积。一般是铝、铁、锰氧化物首先沉积,其次是磷酸盐、硅酸盐,最后为碳酸盐。但碳酸盐的沉积最多,形成了大量的石灰岩和白云岩。

和近海相比,远海区的面积虽大,但沉积物不多。因陆源物质较难达到深海,远海沉积中机械沉积的物质来源比较少,只包括风吹来的少量微尘、洋流携带的细小物质和火山灰。生物沉积、化学沉积的数量也很少。

火山地貌

火山

地球内部处于高温和高压的状态时,上覆岩层容易发生破裂,地壳背斜也容易褶皱升起,导致地下炽热的岩浆沿岩层破裂面或背斜轴部喷出地表,形成火山。形成火山的现象叫火山喷发,其形式有两种:裂隙喷发和中心喷发。

火山一般由火山锥、火山口、火山喉管三部分组成。火山锥是火山喷出物质在火山口附近堆积成的锥状山体,是火山地貌的一种,分为火山碎屑锥、熔岩锥、混合锥、熔岩滴丘四类。火山口是火山锥顶部喷发地下高温气体和固体物质的出口,大部分呈漏斗形。底部呈坑状的火山口被称为熔岩坑,坑口常能积水成湖的则是火山口湖。火山喉管是火山喷发时岩浆喷出地表的通道。通道中心喷发的火山喉管呈圆筒状;裂隙喷发的则呈长条状或不规则状。

火山喷发示意图

按火山喷发的特点和形态特征,火山可分为三种类型,分别是盾形火山、碎屑锥火山、复合火山。

碎屑锥火山

复合火山

盾形火山

火山地貌的分类

火山地貌有两种,一种是裂隙式喷发形成的火山地貌,一种是中心式喷发形成的火山地貌。

裂隙式喷发若发生在海底,会形成洋脊和洋盆;若发生在陆地上,则会形成面积较大的玄武岩高原,如巴西南部高原、印度德干高原、埃塞俄比亚高原、我国内蒙古东南部高原等。

中心式喷发形成的火山地貌包括的种类很多。灰渣火山锥是由火山碎屑物在火山口周围堆积而成的锥形体,如菲律宾的马荣火山;流动性小、富含硅质的熔岩流喷出形成富硅质熔岩穹丘;流动性大的基性熔岩流反复喷出堆积成基性熔岩盾;古火山锥再次喷发破坏了锥顶,使其成扩大成环形凹地,并在其中形成次生火山锥;多次喷发的火山碎屑和熔岩呈层状混合堆积成复合火山锥;爆炸式火山喷发后形成破火山口;填塞在火山喷发通道中的大块凝固熔岩,在火山锥被剥蚀后露出地表而形成火山塞,如美国怀俄明州的“鬼塔”;火山口积水可形成火山口湖,如白头山的天池。 JLFHVoJ/mcQe3M/iIZ7uBDC8FrMlV11Ik1grB/cjWP921TVZ543IVQTMDmyN3+UA



八、生物群落与生态系统

生物与环境

地球的生物界

地球生物界包括原核生物界、原生生物界、植物界、真菌界、动物界。

原核生物是指由原核细胞组成的生物,它们没有任何带膜的细胞器,没有明显的细胞核,细胞结构十分简单。原核生物界包括所有缺乏细胞核膜的生物,主要是细菌,如蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等。

原生生物是指具有细胞核和有膜的细胞器的单细胞生物。原生生物比原核生物更大、更复杂。有些原生生物可以利用光合作用制造食物,如裸藻。原生生物界至少包含5万种生物,主要生活在水中或湿润的环境中。

植物是能够通过光合作用制造其所需要的食物的生物的总称。植物是人类和其他生物赖以生存的基础。植物界和其他生物类群的主要区别是含有叶绿素,能进行光合作用,自己可以制造有机物。此外,它们绝大多数是固定生活在某一环境,不能自由运动。

真菌是一种真核生物。包括各类蕈类、霉菌和酵母,大多真菌原先被划分入动物或植物。真菌的细胞既不含叶绿体,也没有质体,是典型异养生物。它们从动物、植物的活体、死体和它们的排泄物,以及断枝、落叶和土壤腐殖质中,来吸收和分解其中的有机物,作为自己的营养。

动物界是多细胞真核生命体中的一大类群,包括一般能自由运动、以碳水化合物和蛋白质为食的所有生物。动物分为脊椎动物与无脊椎动物两大类。脊椎动物包括鱼类、两栖类、爬行类、鸟类、哺乳类五大种类,无脊椎动物包括原生动物、扁形动物、腔肠动物、棘皮动物、节肢动物、软体动物、环节动物、线形动物八大类。

生态因子与生物

光与生物

光是一个十分复杂且重要的生态因子,光因子的变化对生物有着深刻的影响。光的波长对植物的生态作用最明显,因为植物的光合作用不能利用所有波长的光,只可利用可见光(400~760纳米)。长波光(红光)有促进延长生长的作用,短波光(蓝紫光、紫外线)有利于花青素的形成,并抑制茎的伸长。此外,光强与光照长度对生物生态作用的影响也很大。

温度与生物

任何生物都是在一定的温度范围内活动的,温度是对生物影响最为明显的环境因素之一。当温度适宜时,生物体内的生理生化反应会随着温度的升高而加快,代谢活动加强,从而加快生长发育速度;当温度过高或过低时,生物将受到严重危害,甚至死亡。

水与生物

水是任何生物体都不可缺少的重要组成成分。生物的新陈代谢是以水为介质进行的,生物体内营养物质的运输、废物的排除、激素的传递以及生命赖以存在的各种生物化学过程,都必须在水溶液中才能进行。

空气与生物

空气对生物的影响主要表现在空气的化学成分上。空气中的氧是动植物呼吸作用必需的物质,二氧化碳则是植物光合作用所必需的原料之一。

土壤与生物

土壤是陆地生态系统的基础,具有肥力是土壤最为显著的特性。不同的土壤质地与结构对生物的活动有着不同的影响。如土壤质地较均匀,粗颗粒多,通气透水、保水保肥性能都较好,抗旱能力强,适宜生物生长,砂土、粘土则不同。

此外,土壤的温度、水分、空气、酸碱度对生物也有着不同的影响。

生物之间的关系

自然界的生物之间存在着竞争、寄生、捕食、合作和共生关系。

竞争是指两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象。竞争的结果往往对一方不利,甚至被消灭。例如,在森林中的各种植物之间,得到阳光的就可以生存,而得不到阳光的就无法生存而灭绝。

一种生物寄居在另一种生物的体内或者体表,从那里汲取营养物质来维持生活,这种现象叫做寄生。如菟丝子常寄生在豆科植物体上,噬菌体寄生在细菌细胞内。

捕食是指一种生物以另一种生物为食的现象。如草食性动物兔子,以某些植物为食;肉食性动物狼以某些草食性植物为食。从另一个方面讲,捕食作用对于提高生物数量与质量、维持生态平衡起了一定的作用。

合作是指两种都能独立生存的生物生活在一起,彼此从对方受益的关系。如昆虫与鸟类在采食植物花蜜的同时又帮助植物传播植物孢子或者花粉。

共生是指两种生物共同生活在一起,相互依赖,彼此有利,分开后至少有一方不能独立生存的现象。如白蚁能为其肠道内的鞭毛虫提供养料,而鞭毛虫能帮助白蚁消化木纤维,二者就是一种共生关系。

生物对环境的适应

生物对环境适应的普遍性与相对性

生物对环境的适应是普遍存在的。现在生存的每一种生物,都具有与环境相适应的形态结构、生理特征或行为。如鱼的身体呈流线形,用鳃呼吸,用鳍游泳,这些都是适应水生环境的结果。生物对环境的适应性有趋同适应与趋异适应两类。

生物对环境的适应只是在一定程度上的适应,并不是绝对的、完全的适应,更不是永久性的适应,环境以及其他因素的不断变化会对生物的适应性造成影响。

几种典型的生物适应环境的实例

保护色:保护色是动物适应环境从而使其体色具有与环境色彩相似的色彩。具有保护色的动物不容易被其他动物发现,这对它躲避敌害或捕猎动物都是有利的。

拟态:拟态是生物的外表形状或色泽斑与其他生物或非生物非常相似的状态。拟态与保护色相比,不但体色与环境相似,而且形态也与环境相似,其伪装程度比保护色更进一步。

警戒色:警戒色是某些有恶臭或毒刺的动物所具有的鲜艳色彩和斑纹。警戒色不同于保护色和拟态,它不是伪装,而是暴露。只有充分暴露自己,才能有效地保护自己。

生物种群和生物群落

生物种群的特点

种群是指在一定时间内占据一定空间的同种生物的个体群。同一区域中往往生活着多个生物种群,种群内部的个体可以自由交配繁衍后代,从而与邻近地区的种群在形态和生态特征上彼此存在一定差异。不同的种群之间构成一个相互依赖、相互制约的群体。

种群是宏观、群体水平上研究生物的基本单位,种群不等于个体简单累加,种群内个体之间通过特定关系构成一个整体,表现出个体不具有的特征,如出生率与死亡率、年龄结构与性别比、分布格局等。

种群一般不会因为个体的消失而消失。在现代生物进化理论中,种群是生物进化的基本单位,种群内个体通过不定向变异与自然选择不断进化。

生物群落的形成

生物群落是指具有直接或间接关系的多种生物种群的有规律的组合,形成的具有复杂种间关系的生物体系。组成群落的各种生物种群不是任意地拼凑在一起,而是有规律组合在一起,这样才能形成一个稳定的群落。如在农田生态系统中的各种生物种群是根据人们的需要组合在一起,而不是由于他们的复杂的营养关系组合在一起,所以农田生态系统极不稳定,离开了人的因素就很容易被草原生态系统所替代。

群落是居住在一个地区的一切生物所组成的共同体。它是由不同的生物种类组成的,生物种类之间通过各种途径相互作用和相互影响。例如一片森林中的植物为其中栖息的动物提供住处和食物,一些动物还可以其他动物为食,还有土壤中生存的大量微生物,它们靠分解落叶残骸为生,这一切组成一个完整的生物群落。

生物群落的结构

生物群落的结构包括垂直结构、水平结构和生态结构三种。

生物群落的垂直结构是指群落内部的成层现象。以温带森林为例,大多数温带森林有三至四层,最上层是由高大的树种构成乔木层,然后是灌木层、草本层,以及由苔藓与地衣构成的地被层。在地面以下,由于各种植物根系所穿越的土壤深度不同,形成了与地上层相应的地下层。农业生产中的间作、套种和混作等就是人们模拟天然植物群落的成层性在生产实践中的一种创造性的应用。

生物群落的水平结构主要表现特征是镶嵌性。群落镶嵌性形成的原因,主要是群落内部环境因子的不均匀性。如小地形和微地形的变化、土壤温度和盐渍化程度的差异、光照的强弱以及人与动物的影响。

生物群落的生态结构表现为层片。层片不是简单的分层,每一个层片均由同一生活型的植物所构成;而某些层可能由几个层片组成。层片具有一定的生态生物学一致性,它还具有一定的小环境,这种小环境构成植物环境的一部分。

生物群落的动态

在气候季节变化明显的地区,生物会随着季节出现周期性的变化。如在落叶阔叶林中,一些草本植物在春季树木出叶之前就开花,另一些则在晚春、夏季或秋季开花。随着不同植物出叶和开花期的交替,相联系的昆虫种也依次更替着:一些在早春出现,另一些在夏季出现。鸟类对季节的不同反应,表现为候鸟的季节性迁徙。

生物群落的演替不同于季节性变化,它是指改变了群落原来的性质,使群落发育成另外一个不同的群落的过程。在大多数情况下,生物群落演替过程中的主导组分是植物,动物和微生物只是伴随植物的改变而发生改变的。

演替有两种类型:在原来没有生命的地点开始的演替叫原生演替。在以前存在过生物的地点上发展起来的演替叫次生演替。有些演替可在比较短的时期内完成,例如森林火灾之后的火烧迹地上出现一系列快速更替的群落,最后恢复起稳定的原来类型。但有时演替进行得非常缓慢。演替的最后成熟阶段稳定为顶级。

生物群落的分类

一般生物群落分类是以植物群落分类系统为研究对象的,研究特定地区内的植物群落,以群丛为基本单位,根据特征种定出群丛,再顺次组成群属、群目、群纲等。我国采用的植被分类单位主要有植被型、群系和群丛。

植被型是最重要的高级分类单位,由建群种生活型相同或近似,对温度、水分条件生态关系一致的植物群落联合而成。如落叶阔叶林、常绿阔叶林、草原、草甸等。

群系是植物群落分类中的主要中级单位,即指凡是建群种或共建群种相同的植物群落的联合。如辽东栎林、大针茅草原、红砂荒漠都作为一个独立的群系。

群丛是指层片结构相同,各层片的优势种或共优势种相同的植物群落组成的联合体。它是植被分类的基本单位。如油松林中的油松—胡枝子—杂类草林就是一个群丛。

生态系统

生态系统的提出

1935年,英国生态学家A.G.斯坦利受丹麦植物学家叶夫根·尼温的影响,首次提出生态系统的概念。之后,1940年,B.H.苏卡乔夫提出了生物地理群落的概念。1965年,哥本哈根国际植物学会议把这两个词视为同一个概念,也由此,生态系统的概念开始得到广泛使用。

生态系统指的是由生物群落与无机环境通过物质循环和能量流动的相互作用而形成的统一整体。生态系统的范围可大可小,相互交错,最大的生态系统是生物圈,最小的甚至可以是一个养鱼缸,我们人类主要生活在以城市和农田为主的人工生态系统中。生态系统是开放系统,为了维系自身的稳定,生态系统需要不断输入能量,否则就有崩溃的危险。

生态系统的组成

生态系统由无机环境和生物群落两部分组成。无机环境是生态系统的非生物组成部分,包含阳光、水、无机盐、空气、有机质、岩石及其他所有构成生态系统的基础物质。

生物群落可分为生产者、消费者和分解者三个部分。生产者主要是指各种绿色植物,也包括化能合成细菌与光合细菌,它们利用太阳能进行光合作用或利用某些物质氧化还原反应释放的能量合成有机物,为一切生物提供物质和能量。消费者指依靠摄取其他生物为生的异养生物,包括了几乎所有动物和部分微生物。分解者以各种细菌和真菌为主,也包含屎壳郎、蚯蚓等腐生动物,它们可以将生态系统中的各种无生命的复杂有机质分解成水、二氧化碳等可以被生产者重新利用的物质。

无机环境与生物群落紧密联系。无机环境是一个生态系统的基础,生物群落反作用于无机环境,生物群落在生态系统中既在适应环境,也在改变着周边环境的面貌。

生态系统的结构

生态系统的结构有形态结构、垂直结构、水平结构和营养结构等类别之分,其中最主要的是营养结构。因为生态系统中生产者、消费者与分解者之间的关系,归根到底是食物的关系。因此,生态系统内各种生物之间的这种复杂的营养关系构成了食物链、食物网。

食物链又称为营养链,是指生态系统中各种生物以食物联系起来的链锁关系。比如藻类→水蚤→鱼类→人之间便形成了一种食物链。食物链主要分为两类:捕食性食物链和碎食性食物链。前者是以植物为基础,后面的捕食前者,如青草→野兔→狐狸→狼;后者指以碎食物为基础形成的食物链,如小藻类→虾(蟹)→鱼→人。

一个生态系统中许多动物或植物的食物不是单一的,因此食物链之间又可以相互交错相联,构成复杂网状关系,即食物网。

食物链

食物链是生物间单方向的食物联结,食物网是生物间多方向的食物联结,而营养级指的是食物链上同一环节上所有生物的总和。

生态系统的功能

在生态系统中,生物与环境,生物与生物间的密切联系,可以通过能量流动来实现。能量流动指生态系统中能量输入、传递、转化和丧失的过程。生态系统的能量来自太阳能,太阳能以光能的形式被生产者固定下来后,就开始了在生态系统中的传递。能量在生态系统中的传递是单向流动的,而且逐级递减,递减率为10%~20%。能量传递的主要途径是食物链与食物网,这就构成了生态系统的营养关系。

生态系统的能量流动推动着各种物质在生物群落与无机环境间循环。按照物质循环的途径,可以分为气体型循环、水循环和沉积型循环三大类型。气体型循环是指元素以气态的形式在大气中循环,气体型循环把大气和海洋紧密连接起来。水循环是指水通过蒸发、植物蒸腾、水汽输送、降水、地表径流、下渗、地下径流等环节,在水、大气、岩石、生物圈中进行连续运动的过程。沉积型循环发生在岩石圈,元素以沉积物的形式通过岩石的风化作用和沉积物本身的分解作用转变成生态系统可用的物质。

生态系统的反馈调节

生态系统保持自身稳定的能力被称为生态系统的自我调节能力。一般情况下,成分多样、能量流动和物质循环途径复杂的生态系统自我调节能力强,这是因为其复杂的反馈机制使得自我调节能力增强;反之,结构与成分单一的生态系统自我调节能力就相对较弱。

负反馈调节是生态系统自我调节的基础,它是生态系统中普遍存在的一种抑制性调节机制。例如,在草原生态系统中,食草动物瞪羚的数量增加,会引起其天敌猎豹数量的增加和草数量的下降,而猎豹与草的共同作用又引起瞪羚种群数量下降,维持了生态系统中瞪羚数量的稳定。

与负反馈调节相反,正反馈调节是一种促进性调节机制,它能打破生态系统的稳定性,作用通常小于负反馈调节。比如一个鱼池里大量鱼类因污染而死亡,当这些鱼腐烂时,就会进一步加重污染从而引起更多的鱼死亡。

树木和灌木混杂的森林是动物

生态系统的自我调节能力是有一定限度的,当外界干扰与破坏超过其调节能力时,整个生态系统将会遭到破坏。

生态平衡

生态平衡指的是生态系统各组成部分的内部或相互之间,在长期的发展演化过程中,通过相互制约、转化、补偿、交换及适应而建立起来的一种相互协调的动态平衡关系。生态平衡的形成需要很长时间,它依靠生态系统内部各种作用的相互制约关系来调整控制,同时也受外界环境影响。

生态平衡首先是指环境与生态之间的平衡,即自然界与生命世界之间的平衡。这是生命之所以能够存在的基础,也是生态平衡的关键。我们都知道,生态系统内部结构愈复杂,其自我调节能力或生存能力也就愈强;而生态系统内部结构愈简单,其自我生存能力也就愈弱,愈容易受到干扰和破坏。

生态系统的自我调节能力是有一定限度的,当外界干扰与破坏超过其调节能力时,整个生态系统将会遭到破坏。

陆地生态系统

陆地生态系统的形成

陆地生态系统是指在陆地表面,陆生生物与其所处环境相互作用构成的统一体。这一系统约占地球表面总面积的三分之一。陆地生态系统的生产者主要是各种草本或木本植物,消费者为各种类型的草食或肉食动物。

陆地生态系统主要以大气和土壤为介质,生态环境极为复杂。从炎热的赤道到严寒的两极,从湿润的近海到干旱的内陆,形成各种各样的陆地生态环境。环境的多变也使陆地生态系统的季节性变化和各种类型的演替比较明显。

同时,陆地生态系统中的绿色植物根系发达、枝繁叶茂,其中养育了许多动物,因此,陆地生态系统平均生物生产量较高,生物物质积累量巨大。

陆地生态系统的主要类型

陆地生态系统包括两种类型:森林生态系统和草原生态系统。

森林生态系统是以乔木为主体的生物群落(包括植物、动物和微生物)及其非生物环境(光、热、水、气、土壤等)综合组成的系统。森林生态系统是陆地上生物总量最多的生态系统,对陆地生态环境有决定性的影响。

按地带性气候特点和与之对应的森林类型,可分为热带雨林、亚热带常绿阔叶林、温带落叶阔叶林和北方针叶林等。

草原生态系统是草原地区生物(植物、动物、微生物)和草原地区非生物环境构成的统一整体。全世界草原面积约3.2×10 7 平方千米,占陆地面积21%,主要分为干草原和湿草原(草甸草原)两种。

干草原主要分布在温带、大陆性气候强、雨量较少的地区,生产者为多年生草本植物,如针茅、羊茅、冷蒿、隐子草和羊草等,消费者为草食性昆虫(如蝗虫)和其他草食动物及鸟类等。湿草原主要分布在森林气候地区或高山上,初级生产者主要是生长较高的多年生草本植物,消费者仍为草食动物、啮齿类、鸟类和肉食动物,如鼬、狼、猛禽等。

陆地生态系统的分布规律

纬度地带性

由于热量沿纬度变化,与热量气候带相适应,陆地生态系统的类型也出现有规律的更替。如从赤道向北极依次出现热带雨林、亚热带常绿阔叶林、温带落叶阔叶林与寒带苔原等自然带。

经度地带性

由于海陆分布格局与大气环流特点的影响,降水量常沿经向变化,因此导致生态系统的经向分异,被称为经度地带性,也可称为干湿度地带性。这种分布格局表现最为典型的是北美大陆,从其西部沿海湿润区的森林带向西,经半干旱的草原到干旱区的荒漠,到太平洋沿岸又出现森林带。

垂直地带性

海拔高度每升高100米,气温下降0.6℃左右。降水量最初随高度的增加而增加,但到达一定界线后,降水量又开始降低。这种由于海拔高度的变化,陆地生态系统相应地呈现有规律地垂直更替的分布格局称为垂直地带性。

山地景观

森林

森林是指由树木为主体所组成的地表植被类型。森林是地球上最大的陆地生态系统,对维系整个地球的生态平衡起着至关重要的作用,是人类赖以生存和发展的资源和环境。

全世界森林面积约3.3×10 7 平方千米,占陆地面积的22%。我国的森林主要集中在东北、西南林区,主要类型是针叶林、阔叶林以及针叶与落叶阔叶混交林。

森林不但能为我们提供生产和生活所必需的各种资料,如木材、水果等,对于环境保护的作用也非常大,如调节空气和水的循环,影响气候变化,保持水土等。森林对环境和生态的价值远远高出了它提供生产生活资料的价值。

由于人们对木材资源的大量消耗,地球上的森林面积在逐年变小,这引起了许多环境问题。因此,植树造林,扩大森林面积,是关系到经济效益、社会效益、环境效益及人类长期生存发展的大事。

草原放牧

草原

草原是指以禾草覆盖植物为主的植被类型,它是世界植被类型中分布最广的。草原上生长的多是草本和木本饲用植物,全世界草原面积约3.2×10 7 平方千米,占陆地面积21%。草原不仅是人类发展畜牧业的天然基地,同时对大自然保护也有很大作用,它能够阻止沙漠蔓延,起着生态屏障作用。

草原可以分为自然草原与人工草原两大类。人工草原是指通过人工措施而建植或改良的草原,自然草原主要包括在较干旱环境下形成的草原,有热带草原和温带草原两大类型。热带草原又叫做稀树草原,它主要分布在热带、亚热带的干旱地区;温带草原常常被叫做草原,主要分布在温带干旱区和半干旱区。

世界四大草原是指中国内蒙古的呼伦贝尔草原、锡林郭勒草原,阿根廷潘帕斯草原,以及中国新疆的那拉提草原。

荒漠

荒漠指的是气候十分干燥,降雨量小,蒸发量大,土地贫瘠,植被稀少的自然带。荒漠一般有这样一些特点:物理风化作用十分强烈、风力较大、地表水贫乏、盐碱地比较多、地面大多呈出一片荒凉的景象。

荒漠中的植被大多都是耐旱的乔木、半灌木或者是灌木,也有旱生的肉质植物,这些植物给荒漠中的动物提供了最宝贵的食物,使得它们能在荒凉的地方能够生存下去。

荒漠主要分布在南北纬15°~50°的亚热带或温带无水地区,其中15°~35°是副热带,这里的干旱荒漠带一般是在副热带高压的作用下形成的;北纬35°~50°是温带和暖温带,这一带的大陆内部一般为干旱荒漠区。

绿洲

绿洲指沙漠中具有水草的绿地。它多呈带状分布在河流或井、泉附近,以及有冰雪融水灌溉的山麓地带。绿洲土壤肥沃、灌溉条件便利,往往是干旱地区农牧业发达的地方。我国新疆塔里木盆地和准噶尔盆地边缘的高山山麓地带、甘肃的河西走廊、宁夏平原与内蒙古河套平原有不少绿洲分布。

绿洲出现主要是因为有地下河水的滋润。高山冰雪消融,雪水穿过山谷的缝隙流到沙漠的低谷地段,隐匿在地下的沙子和黏土层之间,形成地下河。这些地下水滋润了沙漠上的植物,也可供人畜饮用,给沙漠带来生机,形成了一个个绿洲。

冻原

冻原又可称之为苔原,主要分布于欧亚大陆和北美大陆高纬度地带。总的特点是气候严寒(最热月平均温度不超过14℃),年降水少(200~300毫米),生长期短(不超过两个月),有许多冻土分布,夏季土壤仅解冻到15~20厘米处。

冻原地区基本没有森林,但在过渡地带,可能有片状森林出现,称为森林冻原。初级生产者以苔藓和地衣为主,也分布有一些草类和矮小的木本植物。消费者有驯鹿、北极狐、北极熊、鼠、迁移鸟类和昆虫等。

陆地自然带

陆地自然带指自然地理事象在地球表面的带状分布。在陆地上,既有水平自然带,又有山地垂直自然带。每一自然带都有一定的热量和水分组合,并有其特有的景观,各带之间没有固定、显著的界线,由一带逐渐转变为另一带。不光大陆有自然带,海洋也存在着水平和垂直的分带。

大陆水平自然带可分为纬度自然带和经度自然带。由于太阳辐射强度自低纬至高纬的逐渐减小,大体沿纬度变化方向更替的自然带,称为纬度自然带;由于海陆位置差异引起水分条件之不同,大体沿经度变化方向更替的自然带,称为经度自然带。

大陆水平自然带主要有热带雨林带、热带草原带、亚热带森林带、温带森林带、温带草原带、温带荒漠带、亚寒带针叶林带、寒带苔原带、极地冰原带等。

温度随高度增加而降低会造成水热条件差异,大陆垂直自然带随着山体高度的增加依次更替的现象,称为山地垂直自然带。

热带雨林带

热带雨林带是指热带高温多雨地区结构层次不明显、种类丰富、高大茂密而终年常绿的乔木植物群落。主要分布于赤道两侧附近的湿润大陆地区,其中以南美亚马孙河流域、非洲刚果河流域和东南亚热带地区最为典型。南美洲热带雨林区面积最大,约为400×10 6 公顷;东南亚亚热带雨林区,是第二大雨林区,覆盖面积约为250×10 6 公顷,呈带状分布。中国雨林主要分布于台湾岛南部、海南岛、广西和云南南部及西藏东南部的部分地区。

本带气候属于赤道多雨型,终年高温,各月平均气温在26℃以上;降水充沛,年降水量在2000毫米左右。高温多雨的气候使树木生长异常茂密,树林里闷热潮湿,叶尖经常滴水,所以称为“雨林”。这里树种繁多,乔木高大,常绿浓密,林冠排列多层,林内藤本植物纵横交错,附生植物随处可见。林中动物以鸟类和猿猴目为活跃。林下的风化壳上,发育着热带的砖红壤。

在南美洲亚马孙河流

热带稀树草原

热带稀树草原又称萨瓦纳群落,是炎热、季节性干旱气候条件下长成的植被类型,主要分布于热带雨林带的两侧,在非洲东部和南美洲巴西高原也有广泛的分布,在澳大利亚、中美洲和亚洲的相应地带分布不是很广。在我国主要分布于云南一带干热河谷、海南岛北部和台湾西南部。

本带气候属于热带干湿季分明的类型,最大的特征是一年中有长达四个月以上的干季。热带稀树草原主要由高大的禾本科植物所构成,在草本植被中间,零星地分布着成片的乔木或独株的乔木,如非洲的波巴布树、南美洲的纺锤树等,它们具有能储藏大量水分的旱生构造。

由于禾草较高以及植被稀疏等特点,所以在热带稀树草原中常有大量有蹄类食草哺乳动物,如非洲稀树草原中的斑马、长颈鹿等,还有一些大型食肉动物如非洲狮等。茂密的草本植物引起生草过程的发育,因此土壤中进行着腐殖质、氮和灰分养料元素的积聚,形成红棕色土。

亚热带常绿阔叶林带

亚热带常绿阔叶林带分布在南北纬25°~35°的大陆东部,如我国的长江流域、日本的南部、美国的东南部、澳大利亚的东南部、非洲东南部以及南美洲的东南部。本气候带温暖湿润,四季分明,年平均气温一般为16~18℃,年雨量超过1000毫米。

东亚地区的常绿阔叶林带在世界各地中面积最广、最富典型性,它属于亚热带季风气候,降水集中于夏季,干湿季比较明显。代表性植被为常绿阔叶林,树木种类和森林结构层次都较雨林简单一些。树木的叶片革质常绿,具有光泽,有机物质生产能力较高。本带林下发育的典型土壤是红壤。动物以猕猴分布最广,树栖的啮齿类和食肉的树栖灵猫也较典型。

亚热带常绿硬叶林带

亚热带常绿硬叶林带是亚热带地中海气候的自然带。因此其主要分布于地中海沿岸,几乎囊括葡萄牙、西班牙、法国、意大利、埃及、利比亚、突尼斯、阿尔及利亚等在内的地中海沿岸各国。另外,在黑海沿岸、非洲大陆西南端、澳大利亚西南沿海、南美洲智利中部、北美加利福尼亚州中西部等地区也有分布。

本带气候属亚热带夏干型,即地中海气候。夏季受副热带高气压带影响,炎热干燥;冬季受西风带影响,温和湿润。最热月平均气温22~28℃,最冷月平均气温在0℃以上,年平均降水量200~1000毫米。主要形成常绿硬叶林带,以常绿灌丛林为主,发育着褐色土。

温带草原带

温带草原是温带气候下的地带性植被类型之一,主要位于北纬30°~50°、南纬30°~40°的大陆内部、温带荒漠的外围。温带草原在世界上主要有三个分布区:欧亚大陆温带草原、北美洲中部温带草原及南美洲南部温带草原。欧亚大陆温带草原自多瑙河下游起,向东经罗马尼亚、俄罗斯、蒙古,直至中国东北和内蒙古等地,是世界上最宽广的草原带。

温带草原的气候属温带大陆气候,夏热冬寒,年降水量250~500毫米,多集中于夏季。植被由低温、旱生、多年生草本植物组成,以禾本科、菊科与豆科为主。群落结构简单,一般仅有一或二层。季相更替频繁而鲜明,夏初葱绿,秋初枯黄,色彩丰富。草原植被下主要发育着黑钙土和栗钙土。动物界主要有啮齿类(如黄鼠、野兔)、有蹄类(如黄羊、羚羊、野牛、野驴)和一些食肉动物(如狼、狐等)。

温带混交林

温带混交林指的是温带地区的一种针叶林与阔叶林混交的自然带。温带混交林主要分布于北纬40°~60°的欧洲西缘、北美洲东缘和亚洲东缘。欧洲的混交林从瑞典、芬兰南端及波罗的海沿岸,到圣彼得堡—雅罗斯拉夫尔—高尔基一线。南至克拉科夫—卢茨克—基辅—高尔基—卡马河中游,呈楔形延伸至乌拉尔山西麓。北美的混交林分布在五大湖沿岸、圣劳伦斯河谷、加拿大大西洋沿海诸省的东南部和美国东北诸州的大部分地区。亚洲的混交林以中国东北的东部为中心,包括小兴安岭、张广才岭、完达山及长白山脉,俄罗斯阿穆尔州的沿海地区,朝鲜北部,日本的本州、四国中心部分。

我国温带混交林主要分布在大小兴安岭、张广才岭、完达山和三江平原。由于受日本海的影响,具有温带海洋性季风气候,1月份平均气温多在-10℃以下,7月份平均气温在20℃以上,积温为700~3200℃,无霜期为50~125天,年降雨量为450~600毫米。

温带针阔叶混交林区域地带性土壤为暗棕壤,隐域性土壤主要是草甸土和沼泽土,其腐殖质化的强度明显大于寒温带地区。在温带针阔叶混交林区域内一些海拔较高的山地上,植被有明显的垂直分异现象。

温带阔叶林带和温带落叶阔叶林

温带阔叶林分布在温带草原东西两侧降水比较丰富的地区,主要植物是阔叶树。在较高纬度地区,冬季寒冷干燥,为落叶阔叶林,如杨树、桦树等;在较低纬度地区,冬季气候温暖,则为常绿阔叶林,如樟树、漆树等。温带阔叶林带多被开辟为农田,天然森林保留地已很少。野生动物在平原地区也很少,在山林中尚可见到的动物有梅花鹿等。

温带落叶阔叶林是指位于北纬30°~50°的温带地区,以落叶乔木为主的森林系统,主要分布于西欧、北美洲东部和东亚,在我国则主要分布于华北地区和东北地区。

温带落叶阔叶林带一年四季分明,夏季炎热多雨,冬季寒冷干燥。最热月平均温度13~23℃,最冷月平均温度约-6℃,年降水量500~1000毫米,土壤以褐土和棕壤为主。

构成温带落叶阔叶林的主要树种是栎、山毛榉、槭、梣、椴、桦等。这些树种都具有较宽薄的叶子,春夏展叶,秋冬落叶。动物主要有鹿、松鼠、兔、狼、熊等。

温带荒漠带

温带荒漠带主要分布在欧亚大陆中部和北美大陆西部的一些山间高原上,以及南美大陆南部的东侧。在我国则主要分布在内蒙古西部和西北干旱地区。

温带荒漠带属于温带大陆性干旱气候,年降水量大都在250毫米以下,蒸发量远远大于降水量。夏季炎热,冬季寒冷,最冷月平均气温在0℃以下,气温变化剧烈。土壤十分贫瘠壤,主要是荒漠土,多风沙。因此,植被比较稀少,只有非常稀疏的草本植物和个别灌木;生长在这里的许多动物具有高度适应干旱环境的特征,常见的有蜥蜴、啮齿类和某些鸟类。

亚寒带针叶林带

亚寒带针叶林带又称寒温带针叶林带,主要分布于北纬45°~70°的寒温带气候区,横贯亚欧大陆北部和北美大陆的北部,形成一条宽阔而完整的针叶林带。针叶林在我国主要分布于大兴安岭北部和阿尔泰山一带。

亚寒带针叶林带属于亚寒带大陆性气候,冬季十分寒冷,寒冷期长,无霜期短,常不足100天;夏季温暖潮湿,降水量不多,而蒸发很少,气候比较湿润。植物主要是云杉、银松、落叶松、冷杉、西伯利亚松等针叶树;典型土壤为灰化土,矿质营养淋滤强烈,十分贫瘠;动物界主要以松鼠、雪兔、狐、貂、麋、熊、猞猁等耐寒动物为多。

苔原带

苔原带又称冻原带,是典型的寒带生态系统。主要分布在北极圈内的许多岛屿、亚欧大陆和北美大陆的最北部。

苔原带气候严寒。冬季十分漫长且多暴风雪,气温可低至-60℃,几乎没有阳光照射。夏季凉爽短促,但热量不足,因此土壤冻结、沼泽化现象广泛。

苔原带这些环境条件,不利于植物生长,因此植物种类贫乏,只有100~200种左右,主要以苔藓和地衣等植物为主,这些植物多贴伏地面生长,群落结构十分简单;动物界也比较单一,种类不多,主要有驯鹿、旅鼠、北极狼、北极狐等,夏季会有大量鸟类在陡峭的海岸上栖息。

山地的垂直地域分异

山地的垂直地域分异是指自然景观随海拔高度而呈现出的带状分布规律。在高山地区,随着海拔的增加,气温逐渐降低,降水也呈现出一定的变化,因而导致了气候、植被、土壤呈现出垂直方向上的带状分布。

在山地的迎风坡与背风坡,水分条件不同,在阳坡与阴坡,热量条件不同,导致了同一山地不同坡向的垂直带谱不同。喜马拉雅山位于亚热带地区,南坡降水量比较丰富,因此南坡出现了比较好的垂直带谱,它的基带为亚热带常绿阔叶林,向上依次为山地暖温带针阔叶混交林带、山地寒温带针叶林带、亚高山寒带灌丛草甸带、高山寒冻草甸垫状植被带、高山寒冻冰碛地衣带和高山冰雪带。而北坡由于受高原地形与降水的影响,其垂直带谱与南坡完全不同。

水域生态系统

水域生态系统的特点

水域生态系统是指水体中的生物有机体与海洋、河流、湖泊、沼泽、水库等水环境形成的各种不同的生态系统。不同的水域生态环境因为以水作为系统环境,因而具有一些共同的特点。

水的比热较大,导热率低,因此水温的升降变化比较缓慢,温度相对稳定,通常不会出现陆地那样强烈的温度变化。另外,水的密度大于空气,许多小型生物如浮游生物可以悬浮在水中长期生存。

各类水域的生产者除一部分水生高等植物外,主要是各种浮游藻类,体积小,繁殖速度快,种群更新周期短。

与陆生生态系统相比,水生生态系统初级生产者对光能的利用率比较低。相关研究表明,实际用于总生产力的有效太阳能仅有1.22%,除去生产者自身呼吸消耗的0.7%,初级生产者净生产力所利用的光能只有0.52%。

淡水生态系统

淡水生态系统包括江河、溪流、泉水、湖泊、池塘、水库等陆地水体。根据水的流速不同,可分为流水和静水两类。

流水生态系统包括江、河、潭、泉、水渠等。按照水流的流速不同,还可分为急流和缓流。在急流中,初级生产者多为附着于石砾的由藻类等构成的植物群,初级消费者多为具有特殊附着器官的昆虫;次级消费者为鱼类,一般体形较小。在缓流中,初级生产者除藻类外,还有高等植物;消费者多为穴居昆虫和鱼类,它们的食物来源除了水生植物外,还有陆地输入的各种有机碎屑。

静水生态系统包括湖泊、池塘、沼泽、水库等。在静水生态系统中,又可分为滨岸带、表水层和深水层。从滨岸向中心,因水的深度不同,初级生产者的种类也不相同,以根生的高等植物为主,还有浮游藻类(如菱、睡莲等)和沉水植物(如狐尾草、金鱼藻等)等。消费者为浮游动物、虾、鱼类、蛙、蛇和水鸟等。表水层因光照充足、温度比较高,硅藻、绿藻、蓝藻等浮游植物占优势,氧气的含量也比较充足,故吸引了许多消费者(如浮游动物和多种鱼类)。深水层由于光线微弱,不能满足绿色植物生长的光照需要,故底栖动物靠各种下沉的有机碎屑为生。

海洋生态系统

海洋是生物圈内面积最大、分层最多的生态系统。按照海水的深度、温度、光照和营养物质状况的不同,我们把海洋进一步划分为海岸带、浅海带和远洋带三大类型。

海岸带位于海洋和陆地交界处,水体的光照条件比较好,水温和盐度变化大,地形、地质比较复杂。生产者是一些大型植物,如红树、大叶红藻、绿藻、棕藻等。消费者是以这些大型植物为食的海洋动物,如牡蛎、蟹、沙蚕等。这一地带也是人类经济活动比较频繁的区域。

虎鲸从浅海和海岸边缘捕捉海豹。

浅海带位于水深200米以内的大陆架部分。浅海带也受大陆输入物的影响,营养物质、光照条件、生产力水平仅次于海岸带。主要的生产者为浮游植物,如硅藻、裸甲藻等。初级消费者为摄食浮游植物的浮游动物,它们与浮游植物一起为其他的海洋动物(如虾、蟹、海鸥、牡蛎等)提供了食料。

远洋带指水深在200米以上的远洋海区。海洋表层光照充足,水温较高,生活着很多小型的、单细胞的浮游藻类和浮游动物,许多深海鱼类都生活在这一带。随着深度的增加,光照减弱,水压加大,生产者不能生存,消费者依靠大量碎屑食物和上层生物为生,多为肉食者。尽管生物种类和个体数量都很少,但在万米深的海底仍有动物生存。

生物多样性及其保护

生物多样性的含义

在生物进化的过程中,物种和物种之间、物种和无机环境之间共同进化,导致了生物多样性的形成。生物多样性指的是一定范围内多种多样活的有机体(动物、植物、微生物)有规律结合所构成的稳定的生态综合体。它是生物、生物与环境形成的生态复合体及其相关的各种生态过程的总和。

生物的多样性由三个方面组成:动物、植物、微生物的物种多样性,物种遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键,指的是地球上动物、植物、微生物等生物种类的丰富程度,它既体现了生物之间及其与环境之间的复杂关系,又体现了生物资源的丰富性;遗传多样性是指地球上的生物所携带的各种遗传信息的总和;生态系统的多样性主要是指地球上生态系统组成、功能的多样性以及各种生态过程的多样性,包括生态环境的多样性、生物群落和生态过程的多样性等多个方面。

生物多样性的价值

生物多样性是人类社会赖以生存和发展的基础。我们的衣、食、住、行及物质文化生活的许多方面都与生物多样性密切相关。

直接价值

生物多样性的直接价值是指人们直接获取和使用生物资源所形成的价值,包括消费使用价值和生产使用价值。生物多样性为我们提供了蔬菜、水果、肉类、毛皮、纤维、木材、药材和多种工业原料。

间接价值

生物多样性的间接价值虽不能用经济指标来衡量,但它的价值可能大大超过直接价值。如生物多样性在保持土壤肥力、保证水质、调节气候以及在稳定大气层成分、维持地球表面温度、调控地表沉积层氧化还原电位等方面的发挥着重要作用。

其他价值

生物多样性还有着其他方面的价值。如保护野生动植物资源,以尽可能多的基因可以为农作物或家禽、家畜的育种提供更多的选择机会,这是它的选择价值;有些物种,尽管其本身的直接价值很有限,但它的存在能为该地区人民带来某种荣誉感或心理上的满足,如大熊猫,这是它的存在价值。

生物多样性的保护

生物多样性保护是一项系统工程,需要各方面的努力。其基本的保护措施有两种:就地保护和迁地保护。就地保护是在野生动植物的原产地对物种实施有效保护;迁地保护是通过将野生动植物从原产地迁移到条件良好的其他环境中进行有效保护的一种方式。

在大多数情况下,就地保护是保护生物多样性的最根本的途径。但随着自然界环境状况的日益恶化,对于一些濒危物种来说,如果其野生种群数量太少,或适合其生存的自然栖息地已被严重破坏,则迁地保护将成为保存这些物种的重要手段。除此之外,离体保护也是一种重要的保护手段,它利用低温等现代技术对一些生物进行长期储存加以保护。

我国实施生物多样性保护的重要职能部门有国务院环境保护委员会、国家环保总局、国家林业局、农业部、建设部、国家海洋局等部门。这些机构部门在履行《生物多样性公约》、开展野生动植物的就地保护方面发挥着主导作用。

此外,一些民间自然保护团体,如中国生物多样性基金会、中国野生动物保护协会、自然之友等,在开展生物多样性的宣传教育、科学普及和协助政府有关职能部门开展生物多样性的保护方面发挥了重要的作用。 JLFHVoJ/mcQe3M/iIZ7uBDC8FrMlV11Ik1grB/cjWP921TVZ543IVQTMDmyN3+UA

点击中间区域
呼出菜单
上一章
目录
下一章
×