我们的环境比我们意识到的更为复杂。为什么?现代世界是极端斯坦,它被不经常发生及很少发生的事件所左右。它会在无数白天鹅之后抛出一只黑天鹅。
虽然证明行为在我们的习惯和传统智慧中根深蒂固,但它是一种危险的错误。
假设我告诉你,我有证据证明球星辛普森(20世纪90年代被控杀害妻子)不是罪犯。瞧,那天我和他一起吃早餐,他谁也没杀。我是认真的,我没有看到他杀任何人。这能够证明他的无辜吗?如果我这么说,你一定会叫来救护车甚至警察,因为你可能会想,我在交易室度过了太多的时间,或者我在咖啡馆坐得太久了、一直想这个黑天鹅问题,我的逻辑可能会立刻给社会带来危险,所以应该将我立即关起来。
如果我告诉你,我有一天在纽约的一处铁轨上打了个盹儿却没有被轧死,你可能会有同样的反应。我会说,嗨,看看我,我还活着,这就证明躺在铁轨上是没有危险的。但想一想,再看一下第四章的图4–1。某个人观察了火鸡前1000天的生活(但没有看到第1001天令人震惊的事件),他会理所当然地对你说,没有证据表明会发生大事,即黑天鹅事件。但是,你会把这一说法理解为有证据表明黑天鹅事件不会发生,尤其是在你不仔细考虑的时候。这两种说法之间的逻辑差距实际上是非常大的,但这种差距在你的思维中却显得很小,所以二者可以相互替代。从现在起10天后,即使你还记得第一种说法,你也一定会倾向于第二种说法(不确切的说法),即证据表明黑天鹅现象不会发生。我把这种混淆称为回路错误(round-trip fallacy),因为两种说法是不可互换的。
把这两种说法相混淆犯了一个很小很小(但至关重要)的逻辑错误,然而我们对微小的逻辑错误是没有免疫力的,教授和思想家也好不了多少(复杂的方程式似乎无法与清晰的思维和谐共存)。除非我们的注意力非常集中,否则我们很可能会在无意识中将问题简化,因为我们的思维在我们无意识的情况下习惯这么做。
这个问题值得我们更深入地探讨。
“我从未想说保守主义者通常很愚蠢,我想说的是愚蠢的人通常很保守。”约翰·斯图亚特·米尔(John Stuart Mill)曾抱怨说。这个问题由来已久:如果你告诉人们成功的秘诀并不总在于技能,他们会以为你在说成功不是靠技能,而是靠运气。
我们在日常生活中运用的推理机制不适用于复杂的环境,当一句话的措辞稍有改动后,其语义会发生很大变化。想一想,在原始环境里,“大部分杀手是野生动物”与“大部分野生动物是杀手”这两种说法之间的差异是没什么影响的。虽然混淆二者是一个错误,但几乎没什么影响。我们的统计直觉还没有发展出认为二者差异很大的思维习惯。
所有的白马都是马。你看见过马。那匹是白马吗?不一定,因为并非所有的马都是白马;在联考中错误回答这种问题的人在大学或许不会犯这样的错误。但有人可能在联考中获得很高的分数,却仍然在某个从城市受歧视区域来的人走进电梯时感到害怕。这种无法自动把知识从一种情况转化为另一种情况,或者从理论转化为实际的状态,是人类本性中令人困扰的特性。让我们称它为行为反应的“领域特殊性”。领域特殊性的意思是,我们的行为反应、思维模式和直觉取决于事物的背景,进化心理学家称之为事物或事件的“领域”。教室是一种领域,生活也是。我们对一则信息的反应不是根据它的逻辑特性,而是根据它的环境,以及它在我们的社会情绪系统中的位置。在教室中以某种角度理解的逻辑问题在日常生活中可能受到不同的对待。实际上,它们在日常生活中确实受到了不同对待。
知识即使是准确的,也不会总产生适当的行为,因为我们习惯忘记我们所知道的,或者忘记如何正确对待知识,即使我们是专家。读者已经看到了,统计学家习惯把脑子留在教室里,一旦他们来到大街上,就会犯最微小的推断错误。1971年,心理学家丹尼尔·卡尼曼(Daniel Kahneman)和阿莫斯·特韦尔斯基(Amos Tversky)不断向统计学教授提出不像统计学问题的统计学问题。其中有一个类似下面的问题(为了表述清楚,我改变了原题)。假设你生活的城市有两家医院,一家大,一家小。某一天,其中一家医院出生的婴儿中60%是男孩。这有可能是哪家医院?许多统计学家(在闲谈中)都犯了选择大医院的错误,而实际上,统计学的基础是大样本更为稳定、其对长期平均值(在这个例子里是每种性别各50%的比例)的偏离比小样本更小。这些统计学家连自己专业的考试都无法通过。在我做数理专家的日子里,我遇见过数百次忘记自己是统计学家的统计学家犯过这类严重错误。
再看一个我们在日常生活中犯可笑的领域特殊性错误的例子。让我们来到豪华的纽约锐步体育俱乐部,看一看多少人乘手扶电梯上了几层楼之后,径直奔往台阶式健身器。
我们在推断和行为反应上的领域特殊性表现是双向的:有些问题我们能够在实际应用中理解,却不能在课本中理解;有些问题我们更容易在课本中理解,却不能在实际应用中理解。人们能够不费力地在社会环境下解决一个问题,但在它以抽象的逻辑问题形式出现时,却往往不知所措。我们习惯在不同的情况下使用不同的思维机制,或者模块:我们的大脑缺少一台能对所有可能的情况制定和应用同样逻辑规则的全能中央计算机。
我已经说过,我们可能在现实中而不是在教室中犯逻辑错误。这种不对称在对癌症的诊断中得到了最好的体现。我们看一看那些为病人检查癌症症状的医生,一般情况下,病人在想知道他们是已痊愈还是会复发的时候会做检查。(实际上,复发是一种错误的说法,它只是表明治疗并没有杀死全部癌细胞,而那些未被发现的坏细胞开始以失控的方式增长。)在现有技术条件下,不可能对病人的每一个细胞进行检查来确定它们是否都正常,所以医生通过尽量精确地扫描病人的身体来选取样本,然后对没有检查的部分做出假设。在一次常规癌症检查之后,医生对我说:“别担心,我们有证据表明你已经痊愈了。”这让我大吃一惊。“为什么?”我问。回答是:“证据显示没有癌症。”“你怎么知道?”我问。他回答:“扫描的结果是阴性。”他居然到处说自己是医生!
医学上有一个首字母缩写词语NED(No Evidence of Disease),意思是没有证据表明存在疾病,但并不存在一个END缩写(Evidence of No Disease),即证明没有疾病的证据。我与许多医生讨论这一问题的经验证明,即使是那些发表研究论文的医生中,也有许多犯了回路错误。
20世纪60年代,傲慢的医生把母乳看作某种低级的东西,似乎他们能够在实验室里复制,但他们没有认识到母乳可能包含超过他们科学理解能力的有用成分,他们只不过是混淆了“无证据表明母乳的优势”与“证据表明母乳无优势”。(这是又一种柏拉图化的行为:当我们能够使用奶瓶时,采用母乳喂养是“毫无道理的”。)许多人为这种无知的推理付出了代价:那些婴儿时期没有得到母乳喂养的人面临更高的健康风险,包括更可能罹患某些癌症,因为在母乳中一定还有一些我们没有找到的营养成分。而且,采用母乳喂养的母亲们获得的好处也被忽视了,比如降低了患乳腺癌的风险。
扁桃体问题也是一样:切除扁桃体可能导致更高的喉癌风险,但数十年来,医生们从未想过这一“无用”的器官可能有着他们没有发现的功能。还有水果和蔬菜中发现的膳食纤维,20世纪60年代的医生认为这些膳食纤维是没有用处的,因为他们没有发现食用这种纤维的必要性,而这导致了一代人的营养不良。最后人们发现,纤维能够延缓糖类在血液中的吸收,还能清扫肠道癌症前期细胞。实际上,正是由于这类简单的推理混淆错误,医学在历史上造成了大量灾难。
我并不是说医生不应该有他们的信念,只是他们应该避免某些固定的、封闭的信念。医学在进步,但许多其他类型的知识没有改善。
由于一种我称为无知经验主义的思维方式,我们天生习惯于寻找能够证明我们的理论以及我们对世界的理解的例子,这些例子总是很容易找到。唉,有了工具和傻子,任何东西都是容易找到的。你可以把能证实你的理论的过去的事例当作证据。例如,一名外交官会向你展示他的“成就”,而不是他没能做到的事。数学家会努力让你相信他们的学科对社会有用,方法是指出那些起作用的事例,而不是白费时间的事例,或者更糟的情况——那些因高雅的数学理论的非经验特性而给社会造成严重成本浪费的数不清的数学应用事例。
即使在检验一项假设时,我们也习惯于寻找证明假设正确的事例。当然,我们很容易找到证据——我们只需要去找,或者让研究者为我们找。我可以为任何事情找到证据,正如富有经验的伦敦出租车司机能够找到拥堵的路段以增加车费一样。
有人更进一步地给了我一些我们成功预测事件的例子。确实有一些,比如登陆月球和21世纪的经济增长率。人们还能够找到本书观点的许多“反证据”,最好的例子就是报纸非常擅长预测电影和剧院的演出时间表。瞧,我昨天预测太阳今天会升起,而它真的升起了!
不过,有办法解决这种无知的经验主义。我的意思是,一系列证实性事实未必是证据。看见白天鹅不能证明黑天鹅不存在。但有一个例外:我知道什么论点是错的,但不一定知道什么论点是正确的。如果我看见一只黑天鹅,我可以确定并非所有天鹅都是白的!如果我看见有人杀人,我可以非常肯定他是罪犯。如果我没有看见他杀人,我不能肯定他是无辜的。同样的道理适用于癌症检查:发现一处恶性肿瘤证明你有癌症,但没有发现肿瘤不能让你得出没有癌症的确定结论。
我们可以通过负面例子而不是正面证据接近真相!对观察到的事实制定通用法则是具有误导性的。与传统智慧相反,我们并不能通过一系列证实性的观察结果积累知识,就像火鸡的例子一样。但对一些事情我持怀疑态度,对另一些事情我却可以确定。这使得观察结果具有非对称性。实际情况并不比这更复杂。
这种非对称性具有很强的实际性。它告诉我们不必成为彻底的怀疑主义者,只需要成为半怀疑主义者。实际生活的微妙之处在于,在决策时,你只需要对事情的一个方面感兴趣:如果你需要确定病人是否有癌症,而不是他是否健康,你可以满足于否定性推理,因为它能够向你提供你所需要的确定信息。所以,我们能够从数据中获得许多信息,但不像我们期望的那样多。有时大量信息会变得毫无意义,而少量信息却具有非凡的意义。确实,1000天并不能证明你是正确的,但1天就能证明你是错误的。
提出这种单边半怀疑主义观点的是卡尔·波普尔(Karl Popper)。在我写作这段文字时,他的一幅黑白照片就挂在我书房的墙上。这是我在慕尼黑时从散文家约亨·韦格纳(Jochen Wegner)那里得到的礼物,同我一样,韦格纳也认为波普尔是现代哲学家中“集大成”的人物——嗯,几乎是这样的。他的著作是为我们写的,而不是为其他哲学家写的。“我们”是指现实决策者,这些人相信自己受不确定性制约,并且认为弄懂如何在不完全信息条件下采取行动是人类最高和最紧迫的追求。
波普尔针对这种非对称性提出了一项重大理论,其基础是一种叫作“证伪”的方法(证明某事错误),旨在区分科学与伪科学。人们立即开始针对这种方法争论不休,尽管它并不是波普尔思想中最有趣和最具原创性的部分。这种关于知识非对称性的思想非常受实践者的喜爱,因为他们对它的感受很明显,它就体现在他们的工作方法中。像某些艺术家一样,哲学家查尔斯·桑德斯·皮尔斯(Charles Sanders Peirce)在其死后才获得敬重。在波普尔还在用尿布的时候,皮尔斯就想出了类似的黑天鹅问题的解决办法,有人甚至称之为皮尔斯–波普尔方法。波普尔更为强大和更具创新意义的思想是“开放”社会,它以怀疑主义为基础,拒绝和抵制确定真理。波普尔指责柏拉图切断了我们的思维,理由正是我在序言里表述的论点。但波普尔最大的思想是关于世界根源的、无可挽回的、严格的不可预测性,这一点我将在有关预测的章节详细讨论。
当然,“证伪”,也就是确定地指出某事是错的没那么容易。测试方法的缺陷可能导致错误的“错误”结论。发现癌细胞的医生可能使用了有缺陷的仪器,从而产生了视觉错误,或者他可能是一个伪装成医生的使用钟形曲线的经济学家。目击犯罪的证人可能是喝醉了。但事实仍然是,你知道某事是错的比你知道某事是正确的更鼓舞人心。并非所有信息都有同等的重要性。
波普尔引入了猜想和反驳的方法,具体是这样的:提出一个(大胆的)猜想,并开始寻找证明猜想错误的事例。这是寻找证实性事例之外的另一种方法。如果你觉得这很容易,你会失望,只有很少的人天生有能力这样做。我承认我不属于此列,我并非天生有这种能力。
有见识的科学家已经研究了我们寻找证据的天性,他们把这种易于犯证明错误的倾向称为“证实偏差”。你可以直接检验某个规律,着眼于该规律奏效的事例,也可以间接证明,着眼于它不奏效的地方。正如我们已经看到的,令人不安的事例在确定真相方面有力得多,但我们通常并不知道这一点。
我所知道的针对这一现象的第一个实验是心理学家P.C.沃森(P.C.Wason)实施的。他把“2、4、6”这个数字序列放在受试者面前,请他们猜出背后的规律。猜测的方法是受试者举出别的由三个数字组成的序列,实验者根据新序列是否符合同样的规律回答“是”或“否”。一旦从实验者的答案中获得确信,受试者就可以写出规律。(请注意这一实验与第一章讨论的历史规律问题的相似性:假设历史是符合某种逻辑的,我们只看到了事件,却从来看不到规律,但必须对它做出猜测。)正确的规律是“按升序排列的数字”,仅此而已。很少受试者发现了这一规律,因为要想找到规律,他们必须举出降序的数字序列(好让实验者的回答为“否”)。沃森注意到,受试者头脑中有一个规律,他们举出旨在证明它的例子,而不会尝试举出与他们的假设不一致的例子。受试者顽固地试图证明他们编造的规律。
这一实验启发了许多类似实验。再举一例:受试者被要求说出为了发现一个人是否外向应该问哪些问题,据说这是另一类实验。结果发现,受试者提供的大部分问题都属于肯定回答能够支持假设的问题。
但也有例外。比如,象棋大师考虑的是在什么情况下投机性的一步会导致弱势,新手则寻找确认性的走法,而不是证伪性的走法。(但请不要通过玩象棋来练习怀疑主义思维。)科学家认为,寻找自身缺点使他们变成象棋高手,而不是练习下棋把他们变成怀疑主义者。同样,投机家乔治·索罗斯在进行金融赌博时会不断寻找证明他最初看法错误的事例。这大概才是真正的自信:冷眼看世界而不需要找理由满足自我膨胀的欲望。
不幸的是,证明的意识根植于我们的思维习惯和陈述习惯中。看看这段作家兼批评家约翰·厄普代克(John Updike)写的评论:“当朱利安·杰恩斯(Julian Jaynes)……猜测直到公元前2世纪末人类都没有意识,而只是自动听从神的声音时,我们感到震惊,但却强迫自己在全部证实性证据下相信这一惊人的论点。”杰恩斯的理论或许是正确的,但厄普代克先生知识的核心问题(以及这一章的观点)不存在一种叫作证实性证据的东西。
下面的观点进一步显示了证实的荒谬性。如果你认为多看见一只白天鹅就能进一步证明没有黑天鹅,那你应该会同意,在纯粹的逻辑基础上,看见一辆红色的迷你Cooper也会进一步证明没有黑天鹅。
为什么?只要想一想“所有天鹅都是白色的”这一论述意味着所有“非白色的事物都不是天鹅”,那么证明后一论述的事例就能证明前一论述。所以,看见不是天鹅的非白色物体就能产生这种确信。这一观点是由我的朋友、(会思考的)数学家布鲁诺·迪皮尔(Bruno Dupire)在我们在伦敦的一次散步时发现的——在深度冥想中散步时,我们甚至没有注意到当时在下雨。他指着一辆红色迷你Cooper大喊:“看,纳西姆,看!没有黑天鹅!”
我们没有天真到因为没有看到某人死去就相信他能够永生,或者因为没有看到某人杀人就相信他没有犯谋杀罪。无知的一般化问题并不总在困扰着我们。但归纳怀疑主义讨论的问题经常涉及我们在自然环境中碰到的问题,也就是使我们学会避免一般化的问题。
例如,当小孩看到一群人中某个人的照片并被要求猜出这群人中其他人的特点时,他有能力选择把哪些特点一般化。拿一张过度肥胖的人的照片给一个小孩,并告诉他这个人是某个部落的人,如果让他描述这个部落的其他人,他(很有可能)不会草率地得出这个部落的所有人都有体重问题的结论,但他可能会对肤色做出一般化描述。如果你给他看深色皮肤的人的照片,让他描述与这个人同部落的其他人,那么他会猜测他们都是深色皮肤。
所以,看上去我们与生俱来的特别而微妙的归纳直觉会引导我们。休谟及英国传统经验主义者认为信念来自习惯,因为他们认为我们从体验和经验观察中学会了一般化,然而与之相反的是,对婴儿行为的研究表明,我们的思维模式使我们对经验进行选择性的一般化。(也就是说,在某些领域进行选择性的归纳学习,而在其他领域保持怀疑态度。)如此一来,我们不仅仅从1000天的经历中学习,还通过进化从我们祖先的学习中获益——生物学研究的正是这种现象。
我们也可能从祖先那里学到错误的东西。我要在此指出,我们或许继承了人类在起源地生存的足够本能,但这些本能显然不适应当前全新的、复杂的、高度信息化的环境。
实际上,我们的环境比我们(以及我们的本能)意识到的更为复杂。为什么?现代世界是极端斯坦,它被不经常发生及很少发生的事件左右。它会在无数白天鹅之后抛出一只黑天鹅,因此我们要在比我们所习惯的更长的时间里暂不下结论。我在第三章说过,我们不可能遇到身高几百米的人,于是我们的本能排除了这类事件。但图书销量或者社会事件的影响力不会遵守这类限制。断定一名作家没有天分、市场不会崩盘、战争不会发生、一项计划无可挽回、一家公司不会破产、一家证券公司的证券分析师不是在吹牛或者邻居不会袭击我们,需要比1000天长得多的时间。在遥远的过去,人类能够做出准确和迅速得多的推理。
并且,如今黑天鹅来源的增加已经超出人们的预测。 在原始环境里,黑天鹅的来源只包括新遇到的野生动物、新的竞争对手和天气突变。这些事件反复出现得太多了,使我们对它们有一种与生俱来的惧怕。这种进行快速推理的本能,以及犯“过滤性错误”(只关注不确定性的少部分来源,即已知的黑天鹅现象的来源)的习惯,仍然深植于我们的天性中。简言之,这种本能是我们的困境所在。