悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。其要点是,推理的前提明显合理,推理过程合乎逻辑,推理的结果则是自相矛盾。
悖论是具有如下模式的推论:如果承认陈述A为真,就会推出陈述A为假;如果承认陈述A为假,就会推出陈述A为真,于是就陷入了悖论。
公元前6世纪古希腊克里特岛人埃匹门尼德提出的说谎者悖论:“所有的克里特岛人都说谎”。他究竟说了一句真话还是假话?
分析:如果他说的是真话,由于他也是克里特岛人之一,他也说谎,因此他说的是假话;如果他说的是假话,则有的克里特岛人不说谎,他也可能是这些不说谎的克里特岛人之一,因此他说的可能是真话。
说谎者悖论是最早的悖论,在当时就引起广泛关注。据说科斯的斐勒塔更是潜心研究这个悖论,结果把身体也弄坏了,瘦骨嶙峋,为了防止被风刮跑,不得不在身上带上铁球和石块,但最后还是因积劳成疾而一命呜呼。为提醒后人免蹈覆辙,他的墓碑上写道:“科斯的斐勒塔是我,使我致死的是说谎者,无数个不眠之夜造成了这个结果。”
最著名的悖论是英国哲学家、逻辑学家罗素于1920年提出的“罗素悖论”(“集合悖论”)。后来,罗素本人用通俗的语言将其改为“理发师悖论”:“某村子里有个理发师,他规定:在本村我只给而且一定要给那些自己不刮胡子的人刮胡子。请问:这个理发师给不给自己刮胡子?”
分析:理发师给不给自己刮胡子呢?只有两种情况:不给自己刮,或者给自己刮。
如果理发师不给自己刮胡子,那么按照他的规定(我一定要给那些自己不刮胡子的人刮胡子),他就应该给自己刮胡子。这就是说,从理发师不给自己刮胡子出发,必然推出理发师应该给自己刮胡子的结论,这本身就构成逻辑矛盾。
如果理发师给自己刮胡子,那么按照他的规定(我只给那些自己不刮胡子的人刮胡子),他就应该不给自己刮胡子。这就是说,从理发师给自己刮胡子出发,必然推出理发师应该不给自己刮胡子的结论,这本身也是一个逻辑矛盾。
此悖论最早由英国学者奥康纳于1948年提出,下面是它的一个变体。
某一天,老师对学生说,下周我将对你们进行一次突击考试,这次考试将安排在下周一至周六的某一天,但没有任何根据使你们可以推算出这是哪一天,否则,就不能称之为突击考试。显然,这样的考试可以实施。
但是有学生经过思考得出结论,这样的突击考试不可能存在,以下是他的论证:
首先,周六不可能是突击考试日,因为如果突击考试安排在周六,则周一至周五都没有突击考试,这样,就可以推算出在周六,这就不能称其为突击考试。
同样,周五也不能是突击考试日,因为如果突击考试安排在周五,则周一至周四都未进行突击考试。这就可以推算出在周五或周六,学生已知道不可能在周六,因此,可推算只有在周五,同样,这也不能称其为突击考试。类似地,可证明其余四天都不可能是突击考试日,因此,这样的突击考试不可能存在。
直觉上,老师安排的突击考试可以在下周的任何一天进行。然而,学生经过严密的推论,却得出相反的结论。这样,我们面临着这样一个悖论:这样的突击考试既是可以实施的,又是不可能实施的。问题出在哪里?
分析:这是一个颇具争议和具有挑战性的问题,属于认知逻辑研究的范畴,有多种求解思路和看法。有一种看法认为:学生的推论在逻辑上是成立的,没有漏洞,但是推导的结论是错误的。一个论证,如果合乎逻辑地得出了虚假的结论,那么只有一种可能,就是做了错误的假设。
学生的论证至少假设:第一,老师的断定为真。第二,学生知道老师的断定为真。这两个假设是不同的,假设了第一点,并不等于假设了第二点,而假设了第二点,也就假设了第一点。显然,学生的论证不但必须假设老师的断定是真实的,而且必须假设自己知道老师的断定是真实的。
问题在于:老师的断定中包含着“断定学生不知道”这样的内容,即断定学生不可能知道突击考试是哪一天,也就是说,学生假设自己知道的命题中,包含断定自己不知道这样的内容。换句话说,存在着这样的命题,一个人不可能知道它的真实性,即使这个命题确实是真实的,即使是从不说谎的上帝亲口告诉他的。对于这样的命题,一个人如果假设自己知道它的真实性,将导致矛盾。
总之,这个问题的关键在于:老师断定了一个真命题,即学生不可能推测突击考试在哪一天,但这个真命题学生是不可能知道它是真的,也就是说,老师的断定对于学生来说是一个不可知的真理,而学生假设自己知道,导致了谬误。