购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

约公元100年

门纳劳斯写成《球面学》

球面三角

古人尊崇“地心说”,认为所有天文现象都是在以地球为中心的球面(天幕)上发生的,这使得球面三角学比平面三角学发展得更快。约公元100年,古希腊数学家和天文学家门纳劳斯写成了一部很有影响力的著作《球面学》,成为当之无愧的球面三角学奠基人。

门纳劳斯公元75年后在亚历山大和罗马等地工作过,公元98年在罗马建立天文台。他学识渊博,写了很多著作,涉及天文学、力学、几何学和三角学,但唯一流传下来的就是《球面学》。

《球面学》一书分3卷,内容包括球面三角学及其在天文学上的应用。在第1卷中,他给出了球面三角形的定义,即“球面上由大圆的圆弧所包围的部分”,又限定“这些圆弧都小于半圆”。这是世界上第一次对球面三角形所作的明确表述。他还给出了球面三角形的全等定理,以及球面三角形内角之和大于180°的结论。这一卷是为研究球面三角学奠定基础。他采用球面上大圆的圆弧而不是平行圆的圆弧,这是球面三角学发展的一个转折点。

第2卷是球面几何学在天文学上的应用,数学意义不是特别大。

第3卷才正式对球面三角学展开论述,其第一个命题就是球面上的“门纳劳斯定理”:设X Y Z分别是球面三角形ABC三条边BC CA AB或其延长线上的点,则此三点共大圆的充要条件是: 。当然,这是采用现代的数学语言描述的,古时还没有“sin”这样的符号,但门纳劳斯已经采用了类似“正弦”的概念。 ZIts7Sk9oKcjt31so/rHliPE+ZSC+ERJ8JPpu4VADpk9sFfHPfHvoL5aw+aDowBW

点击中间区域
呼出菜单
上一章
目录
下一章
×

打开