甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。付钱 时,甲和乙都要付给丙48元,每千克苹果多少元?
我们知道既然三人拿同样多的钱买苹果,那么应该每人分得同样多的苹果。现在,甲和乙都比丙多拿24千克,也就是说多拿的两份24千克苹果应该是平均分给三个人的,即每人分得24×2÷3=16(千克)。由于丙少拿16千克苹果,因此得到48×2=96(元)。所以
24×2÷3=16(千克)
48×2÷16=6(元)
答:每千克苹果6元。
1.甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6元钱。那么,每支铅笔多少元?
2.春游时小明买了3个面包,小军买了5个面包,中午小明和小军发现小红没有带食品,于是三人平均分了这些面包,而小红拿出8元钱分给了小明和小军。每个面包多少元?
3.“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师12元钱。老师应该怎样把12元钱分给小华和小英?
彬彬制衣有限公司要加工一批出口的上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划350件。那么,原计划加工上衣多少件?
根据题意,由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20-15)天中的工作量。因此,先求原计划每天加工上衣多少件,再计算原计划加工多少件。
(60×15-350)÷(20-15)
=550÷5
=110(件)
110×20=2200(件)
答:原计划加工上衣2200件。
1.龙鑫公司用汽车运一堆煤,原计划8小时运完。实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。原计划8小时运多少吨煤?
2.汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行了8小时后,发现已超过乙地20千米。甲、乙两地相距多少千米?
3.小明看一本书,原计划8天看完。实际每天比原计划少看了4页。这样,用10天才看完了这本书。那么,这本书一共有多少页?
摩托车每小时行60千米,中巴车每小时行70千米,两车从相距50千米的两地同向开出(摩托车在前),那么中巴车几小时可追上摩托车?
根据题目的意思,我们知道两车之间的距离是50千米,也就是中巴车要追及的路程。因为摩托车每小时行60千米,中巴车每小时行70千米,中巴车比摩托车每小时多走70-60=10(千米)。所以
50÷(70-60)
=50÷10
=5(时)
答:中巴车5小时可追上摩托车。
1.小轿车每小时行100千米,大客车每小时行82千米,两车从相距54千米的两地同向开出(大客车在前),那么,小轿车几小时可追上大客车?
2.小刚坐车上学,步行回家,在路上一共用了40分钟。如果他往返都坐车,全程需要20分钟。如果他往返都步行,需要多少分钟?
3.兄弟两人从家骑自行车去海边看风景,弟弟每小时行9千米,半小时以后,哥哥骑自行车出发,每小时行12千米,结果两人一起到达了海滩,那么,兄弟两人的家到海滩有多远?
小明和小艳两人在周长400米的环形跑道上赛跑,已知小艳的速度是每分钟80米,小明的速度是每分钟100米。现在,小明在小艳的前面120米处,经过多少分钟后小明可以追上小艳?
根据题目的意思,如图所示,小明追及小艳的距离为400-120=280(米),小明每分钟可以追上小艳100-80=20(米)。所以
(400-120)÷(100-80)
=280÷20
=14(分)
答:经过14分钟后小明可以追上小艳。
1.像上面的经典例题4那样,如果小明和小艳继续沿相同的方向跑,到第二次追上小艳还需要多少时间?
2.小林和大亮各自以一定的速度在周长为500米的环形跑道上跑步。小林每分钟跑100米。
(1)小林和大亮同时从同一个地点出发,反向跑步2分钟后两人相遇,求大亮的速度。
(2)小林和大亮同时从同一地点出发,沿同一方向跑步,经过多少分钟后两人第一次在途中相遇?
3.A、B两人在一个400米的环形跑道上跑步。若两人同时从同一地点同方向出发,A过10分钟第一次从B身后追上B;若两人同时从同一地点反向出发,只要2分钟就会相遇。求A、B的速度。
客、货两车分别从两地同时相向而行。货车每小时行60千米,客车每小时行70千米。两车相遇时距全程中点10千米。两地之间相距多少千米?
我们可以通过画图帮助理解题意。
在相同的时间内,因为客车的速度快,所以相遇时客车行的路程比货车多。从图中可以看出,货车行了“全程的一半少10千米”,客车行了“全程的一半多10千米”,也就是说客车比货车多行了10×2=20(千米)。由于客车每小时比货车多行70-60=10(千米),多少小时客车比货车多行20千米呢?20÷10=2(时),因此,客车和货车两车经过2小时在途中相遇。所以
10×2÷(70-60)
=20÷10
=2(时)
(70+60)×2=260(千米)
答:两地之间相距260千米。
1.甲、乙两辆货车分别同时从A、B两个城市相对开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两市中点35千米处相遇。那么,A、B两个城市间的路程是多少千米?
2.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。东、西两地相距多少千米?
3.甲、乙两辆卡车分别同时从A、B两地相对开出,甲车每小时行45千米,乙车每小时行65千米,当乙车到达A、B两地中点处时,与甲车还相距60千米。那么,A、B两地间的路程是多少千米?
1.春游时小马买了4个面包,小牛买了6个面包,中午发现小丽没有带食品,结果三人平均分了这些面包,而小丽拿出10元钱分给了小马和小牛。小马和小牛各应收回多少元?
2.小诚步行上学,如果每分钟行40米,正好准时到达学校;有一天他每分钟行45米,结果早到了5分钟。他家离学校有多远?
3.甲、乙两地相距300千米,客车从甲地开往乙地,每小时行40千米,1小时后,货车从乙地开往甲地,每小时行60千米。货车出发后几小时与客车相遇?
4.在200米的环形跑道上,小娟和小玲同时同向并排起跑,小娟每秒钟跑6米,小玲每秒钟跑4米,两人起跑后经过多少秒第一次相遇?
5.甲、乙两车分别从两地同时相向而行。甲每小时行75千米,乙每小时行83千米。两人相遇时距全程中点24千米。两地之间相距多少千米?
6.甲、乙两人同时从东、西两镇出发,相向而行,经过2小时40分钟,在途中相遇,相遇后各自继续前进。甲到达西镇和乙到达东镇后都立即返回。如果两人来回的速度都不变,他们从出发到第二次相遇需要多长时间?
7.三、四、五年级在学校捐书活动中共捐图书600本,四年级捐书本数是三年级的2倍,三年级比五年级少捐20本。三个年级各捐书多少本?
8.某公司用大、小两辆货车运煤,大货车运了9次,小货车运了10次,一共运了132吨,大货车3次的运煤量等于小货车4次的运煤量。那么,大、小货车的载重量各是多少吨?
9.甲、乙、丙三人从图书馆借来一批图书,甲拿走了全部的一半多1本;乙拿走了剩下的一半多1本;丙拿走了最后剩下的5本。他们原来从图书馆借来图书多少本?
10.甲、乙两队学生从相距18千米的两地出发,相向而行,一学生骑自行车以不变的速度在两队之间往返联络(停歇时间不计),骑自行车的学生与甲、乙两队学生同时出发,如果甲队学生每小时走5千米,乙队学生每小时走4小时,那么两队学生相遇时,骑自行车的学生共行了26千米,骑自行车的同学每小时行多少千米?