|
参考文献 |
[1]窦力威.中国钢铁工业运行情况及其展望[技术报告],太原,2016.https://wenku.baidu.com/view/75cdf8f9fad6195f302ba624.html.
[2]张建良,周芸,徐润生,王广伟,焦克新.中国冶金,2016,(2):1.
[3]林腾昌.中国冶金,2016,(7):7.
[4]中国钢铁工业协会2016年第四季度信息发布会新闻稿,http://www.chinaisa.org.cn/gxportal/.
[5]柴天佑.基础自动化,2000,(4):64.
[6]柴天佑.辽宁视窗,2003,5:30.
[7]周晓君,阳春华,桂卫华.控制理论与应用,2015,32(9):1158.
[8]夏平.矿冶,2007,16(2):85.
[9]孙云东,杨金艳.黄金,2010,31(4):35.
[10]周俊武,徐宁.有色金属(选矿部分),2011,(A1):47.
[11]杨琳琳,唐秀英,宁旺云.现代矿业,2012,28(4):116.
[12]R.Ahmadi,M.Hashemzadehfini,M.Amiri Parian.Advanced Powder Technology,2013,24:441.
[13]A.Ebadnejad,G.R.Karimi,H.Dehghani.Powder Technology,2013,245:292.
[14]石立,张国旺,肖骁.金属矿山选矿厂磨矿分级自动控制研究现.有色金属(选矿部分)2013,增刊:44.
[15]王会清,顾淑萍.甘肃冶金,2009,31(4):16.
[16]J.Bouchard,A.Desbiens,R.D.Villar,E.Nunez.Mineral Engineering,2009,22:519.
[17]耿增显,柴天佑,岳恒.仪器仪表学报,2008,29(12):2486.
[18]李海波,郑秀萍,柴天佑.浮选过程混合智能优化设定控制方法.东北大学学报(自然科学版)2012,33(1):1.
[19]刘利敏,杨文旺,刘之能,吴峰.基于BP神经网络的浮选回收率预测模型.有色金属(选矿部分)2013,增刊:206.
[20]缪天宇,王旭,王庆凯,茆薪.数控技术,2012,9:18.
[21]Betancourt,F.,Bürger,R.,Diehl,S.,Farås,S.Minerals Engineering,2014(62):91.
[22]耿增显,柴天佑,岳恒.浓密机生产过程综合自动化系统.控制工程2008,15(4):353.
[23]Jahedsaravani.A,Marhaban.MH,Massinaei.M.Minerals Engineering,2014,69:137.
[24]徐宁,周俊武,王清.铜业工程,2011(1):54.
[25]柴天佑,丁进良,王宏,等.自动化学报,2008,34(5):505.
[26]高素萍.金属矿山(增刊),2005,8:516.
[27]王启柏.矿业装备,2015:26.
[28]周平,柴天佑.控制理论与应用,2008,25(06):1095.
[29]汤健.赤铁矿磨矿过程运行优化模型研究:[学位论文].辽宁:东北大学流程工业综合自动化中心,2012.
[30]高兰,贾瑞强,钱鑫.中国矿业,2001,10(5):44.
[31]DF-6201雷达物位计.[online],2011,http://www.dfmc.cc/product/642.html.
[32]MSE-ML30激光料位计.[online],2016,https://msechina.cnal.com/product/detail-15174271.shtml.
[33]丁进良,岳恒,齐玉涛,等.仪器仪表学报,2006,27(9):981.
[34]任会峰.基于泡沫图像的铝土矿浮选pH值软测量及应用[学位论文].中南大学,2012.
[35]陈建宏,等.金属矿山(增刊),2004(11):88.
[36]杨峰.铜业工程,2002(1):39.
[37]林春强.在线矿浆品位分析仪的设计与现场应用[学位论文],大连理工大学,2013.
[38]陈辉.分数阶微分图像增强技术及在铜浮选监控系统中的应用[学位论文].中南大学,2013.
[39]何花金.凡口铅锌矿选矿生产自动检测技术的应用.有色金属(选矿部分),2011(2):48.
[40]王卫星.浮选工业生产过程中的计算机视觉器.金属矿山,2002(9):39.
[41]曾荣.浮选泡沫图像边缘检测方法的研究.中国矿业大学学报,2002(9):421.
[42]马秦伟,李云霞.自动化新技术在选矿厂的应用.技术探讨,2015,2:20.
[43]马永亮.基于无线振动监测技术在选矿球磨机中的应用.河南科技,2013(9):78.
[44]李建奇.矿物浮选泡沫图像增强与分割方法研究及应用[学位论文].中南大学,2013.
[45]李振兴,文书明,罗良烽.选矿过程自动检测与自动化综述.云南冶金,2008(3):20.
[46]周俊武.选矿过程检测与控制技术新进展.有色冶金设计与研究,2015,3:6.
[47]余刚.选矿生产全流程综合生产指标优化方法的研究[学位论文].东北大学,2012.
[48]Tianyou Chai,S.Joe Qin,Hong Wang.Optimal operational control for complex industrial processes .Annual Reviews in Control.2014,38:81.
[49]Ding,J.L.,Chai,T.Y.,Wang,H.Offline Modeling for Product Quality Prediction of Mineral Processing Using Modeling Error PDF Shaping and Entropy Minimization.IEEE Transactions on Neural Networks,2011,22(3):408.
[50]Zhou Ping,Yuan Meng,et al.ELM Based Dynamic Modeling for Online Prediction of Molten Iron Silicon Content in Blast Furnace.Information Sciences,2015(325),237.
[51]Ding,J.L.,Chai,T.Y.,Wang,H.Knowledge-Based Global Operation of Mineral Processing Under Uncertainty.IEEE Trans on Industry Informatics,2012,8(4):849.
[52]Chai,T.Y.,Zhang.Y.J.,Wang.H,Su.C.Y,Sun,J.Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.IEEE Transactions on Neural Networks.2011,22(12):2154.
[53]Liu.Q Chai,T.Y,Qin.S.J.Tension Soft Sensor of Continuous Annealing Line Using Cascade Frequency Domain Observer with Combined PCA and Neural Networks Error Compensation.IEEE Trans.on Neural Networks,2011,22(12):2284.
[54]G.Yu,T.Y.Chai,X.C.Luo.Multiobjective Production Planning Optimization Using Hybrid Evolutionary Algorithms for Mineral Processing.IEEE Transactions on Evolutionary Computation 2011,15(4):487.
[55]T.Y.Chai,L.Zhao,J.B.Qiu,F.Z.Liu,J.L.Fan.Integrated Network-Based Model Predictive Control for Setpoints Compensation in Industrial Processes.IEEE Transactions on Industry Informatics,2013,9(1):417.
[56]F.Liu,H.Gao,J.Qiu,S.Yin,T.Chai,J.Fan.Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process.IEEE Transactions on Industrial Electronics,2013,61(1):460.
[57]Dai Wei,Zhou Ping,et al.Hardware-in-the-Loop Simulation Platform for Supervisory Control of Mineral Grinding Process.Powder Technology,2016:422.
[58]严爱军,柴天佑.竖炉燃烧室温度的智能控制方法及应用.控制工程,2005,12(4):305-309.
[59]Chai T Y,Zhang Y J,Wang H,Su C Y,Sun J.Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.IEEE Transactions on Neural Networks,2011,12(22):2154-2171.
[60]Zhao D Y,Chai T Y,Wang H,Fu J.Intelligent control of hydrocyclone separation process .Control Engineering Practice,2014,22(1):217-230.
[61]周平,柴天佑.磨矿过程磨机负荷的智能监测与控制.控制理论与应用,2014(10):1352-1359.
[62]耿增显,柴天佑,岳恒.浮选药剂智能优化设定控制方法的研究.仪器仪表学报,2008,29(12):2486-2491.
[63]范家璐.(东北大学).CN 103941701 B.2016(专利)一种双网环境下浮选工业过程运行控制系统及方法.
[64]耿增显,柴天佑,岳恒.浓密机生产过程综合自动化系统.控制工程,2008,15(4):353-356.
[65]贾瑶,张立岩,柴天佑.矿浆中和过程中基于模型预估模糊自适应控制.东北大学学报:自然科学版,2014,35(5):617-621.
[66]赵大勇,柴天佑.再磨过程泵池液位区间与给矿压力模糊切换控制.自动化学报,2013,39(5):556-564.
[67]吴峰华,岳恒,柴天佑.竖炉焙烧过程生产质量监控系统.东北大学学报(自然科学版),2007,28(7):913-916.
[68]Li C B,Ding J L.Ensemble random weights neural network based online prediction model of the production rate for mineral.IEEE Transactions on Industrial Electronics.2016.to be published.
[69]杨翠娥.动态多目标优化算法及其应用[学位论文],东北大学,2016.
[70]Cuie Yang,Jinliang Ding,Tianyou Chai,Yaochu Jin.Reference point based prediction for evolutionary dynamic multiobjective optimization.Evolutionary Computation(CEC),2016 IEEE.to be published.
[71]赵大勇.赤铁矿磨矿全流程智能控制系统的研究[学位论文].东北大学.2014.
[72]刘金鑫.赤铁矿磁选过程智能优化控制系统的研究[学位论文].东北大学.2009.
[73]严爱军.竖炉焙烧过程混合智能控制的研究[学位论文].东北大学.2006.
[74]丁进良.动态环境下选矿生产全流程运行指标优化决策方法研究[学位论文].东北大学.2012.
[75]汤健,郑秀萍,赵立杰,岳恒,柴天佑.基于频域特征提取与信息融合的磨机负荷软测量.仪器仪表学报[J],2010,31(10):2161-2167.
[76]Jian Tang,Tianyou Chai,Lijie Zhao,Wen Yu,Heng Yue.Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm,Neurocomputing,2012,78(1):38-47.
[77]汤健,柴天佑,赵立杰,岳 恒,郑秀萍.基于振动频谱的磨矿过程球磨机负荷参数集成建模方法.控制理论与应用,2012,2.
[78]Jian Tang,Wen Yu,Tianyou Chai,Lijie Zhao.On-line principle component analysis with application to process modeling,Neurocomputing,2012,82(1):167-168.
[79]吴峰华.竖炉焙烧运行工况故障诊断与容错控制的研究:[学位论文].辽宁:东北大学流程工业综合自动化中心,2011.
[80]Jinliang Ding,Tianyou Chai,Hong Wang.Offline Modeling for Product Quality Prediction of Mineral Processing Using Modeling Error PDF Shaping and Entropy Minimization,IEEE Transactions on Neural Networks,2011,22(3):408-419.
[81]Chai T,Jia Y,Li H,et al.An intelligent switching control for a mixed separation thickener process.Control Engineering Practice,2016,57:61-71.
[82]Tianyou Chai,Jinliang Ding,Gang Yu and Hong Wang.Integrated Optimization for the Automation Systems of Mineral Processing,IEEE Transactions on Automation Science And Engineering,2014,11(4):965-982.
[83]段瑞钰.冶金流程工程学.北京:冶金工业出版社.2009.