购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

4.3 概率分布

概率分布用来描述随机变量(含随机向量)在每一个可能状态的可能性大小。概率分布有不同方式,这取决于随机变量是离散的还是连续的。

对于随机变量X,其概率分布通常记为P(X=x),或X~P(x),表示X服从概率分布P(x)。概率分布描述了取单点值的可能性或概率,但在实际应用中,我们并不关心取某一值的概率,特别是对连续型随机变量,它在某点的概率都是0,这个后续章节将介绍。因此,我们通常比较关心随机变量落在某一区间的概率,为此,引入分布函数的概念。

定义:设X是一个随机变量,xk是任意实数值,函数:

称为随机变量X的分布函数。

由(4.1)式不难发现,对任意的实数x 1 、x 2 (x 1 <x 2 ),有:

成立。式(4.2)表明,若随机变量X的分布函数已知,那么可以求出X落在任意一区间[x 1 ,x 2 ]的概率。

4.3.1 离散型随机变量

设x 1 ,x 2 ,…,x n 是随机变量X的所有可能取值,对每个取值x i ,X=x i 是其样本空间S上的一个事件,为描述随机变量X,还需知道这些事件发生的可能性(概率)。

设离散型随机变量X的所有可能取值为x i (i=1,2,…,n):

称为X的概率分布或分布律,也称概率函数。

我们常用表格的形式来表示X的概率分布:

由概率的定义可知,Pi(i=1,2,...)必然满足:

1)P i ≥0 i=1,2,...,n

2)

例1 :某篮球运动员投中篮圈的概率是0.8,求他两次独立投篮投中次数X的概率分布。

解:X可取0,1,2为值,记A i ={第i次投中篮圈},i=1,2,则P(A 1 )=P(A 2 )=0.8

由此不难得到下列各情况的概率:

投了两次两次都投中,即:P(X=2)=P(A 1 A 2 )=P(A 1 )P(A 2 )=0.8×0.8=0.64

且P(X=0)+P(X=1)+P(X=2)=0.04+0.32+0.64=1

于是随机变量X的概率分布可表示为:

若已知一个离散型随机变量X的概率分布:

则由概率的可列可加性,可得随机变量X的分布函数为:

例如,设X的概率分布由例1给出,则

常见的离散随机变量的分布有:

1.两点分布

若随机变量X只可能取0和1两个值,且它的分布列为P(X=1)=p,P(X=0)=l-P,其中(0<P<1),则称X服从参数为p的两点分布,记作X~B(1,p)。其分布函数为:

2.二项分布

二项分布是重要的离散概率分布之一,由瑞士数学家雅各布·伯努利(Jokab Bernoulli)提出。一般用二项分布来计算概率的前提是,每次抽出样品后再放回去,并且只能有两种试验结果,比如黑球或红球,正品或次品等。二项分布指出,假设某样品在随机一次试验出现的概率为p,那么在n次试验中出现k次的概率为:

假设随机变量X满足二项分布,且知道n、p、k等参数,我们如何求出各种情况的概率值呢?方法比较多,这里介绍一种比较简单的方法,利用scipy库的统计接口stats即可,具体如下:


import numpy as np  
import matplotlib.pyplot as plt  
import math  
from scipy import stats  
%matplotlib inline

n = 20  
p = 0.3  
k = np.arange(0,41)  
#定义二项分布
binomial = stats.binom.pmf(k,n,p)  

#二项分布可视化 
plt.plot(k, binomial, 'o-')  
plt.title('binomial:n=%i,p=%.2f'%(n,p),fontsize=15)  
plt.xlabel('number of success')  
plt.ylabel('probalility of success', fontsize=15)  
plt.grid(True)  
plt.show()

运行后的二项分布图如图4-1所示。

图4-1 二项分布图

3.泊松(Poisson)分布

若随机变量X所有可能取值为0,1,2,…,它取各个值的概率为:

这里介绍了离散型随机变量的分布情况,如果X是连续型随机变量,其分布函数通常通过密度函数来描述,具体请看下一节。

4.3.2 连续型随机变量

与离散型随机变量不同,连续型随机变量采用概率密度函数来描述变量的概率分布。如果一个函数f(x)是密度函数,满足以下三个性质,我们就称f(x)为概率密度函数。

1)f(x)≥0,注意这里不要求f(x)≤1。

2)

3)对于任意实数x 1 和x 2 ,且x 1 ≤x 2 ,有:

第2个性质表明,概率密度函数f(x)与x轴形成的区域的面积等于1,第3个性质表明,连续随机变量在区间[x 1 ,x 2 ]的概率等于密度函数在区间[x 1 ,x 2 ]上的积分,也即与X轴在[[x 1 ,x 2 ]内形成的区域的面积,如图4-2所示。

图4-2 概率密度函数

连续型随机变量在任意一点的概率处处为0。

假设有任意小的实数Δx,由于{X=x}⊂{x-Δx<X≤x},由式(4.1)分布函数的定义可得:

令Δx→0,由夹逼准则,式(4.5)可求得:

式(4.6)表明,对于连续型随机变量,它在任意一点的取值的概率都为0。因此,在连续型随机变量中,当讨论区间的概率定义时,一般对开区间和闭区间不加区分,即:P(x 1 ≤X≤x 2 )=P(x 1 <X≤x 2 )=P(x 1 ≤X<x 2 )=P(x 1 <X<x 2 )成立。

最常见的正态分布的密度函数为:

这个连续分布被称为正态分布,或者高斯分布。其密度函数的曲线呈对称钟形,因此又称为钟形曲线,其中μ是平均值,σ是标准差(何为平均值、标准差后续我们会介绍)。正态分布是一种理想分布。

正态分布如何用Python实现呢?同样,我们可以借助其scipy库中stats来实现,非常方便。


import numpy as np
import matplotlib.pyplot as plt 
from scipy import stats  
%matplotlib inline

#平均值或期望值
mu=0     
#标准差
sigma1=1 
sigma2=2 

#随机变量的取值
x=np.arange(-6,6,0.1)
y1=stats.norm.pdf(x,0,1) #定义正态分布的密度函数
y2=stats.norm.pdf(x,0,2) #定义正态分布的密度函数
plt.plot(x,y1,label='sigma is 1')
plt.plot(x,y2,label='sigma is 2')
plt.title('normal $\mu$=%.1f,$\sigma$=%.1f or %.1f '%(mu,sigma1,sigma2))
plt.xlabel('x')
plt.ylabel('probability density')
plt.legend(loc='upper left')
plt.show()

sigmal系统与正态分布如图4-3所示。

图4-3 sigmal系统与正态分布

正态分布的取值范围是负无穷到正无穷。这里我们为便于可视化,只把X数据定义在[-6,6]之间,用stats.norm.pdf得到正态分布的概率密度函数。另外从图形可以看出,上面两图的均值u都是0,只是标准差(σ)不同,这就导致图像的离散程度不同,标准差大的更分散,个中原因,我们将在介绍随机变量的数字特征时进一步说明。 Ly1HPbg3xJuv5YU0Jk63X8J1csUFDeCKrF0ul0Gew0i16f85R0PasbcDNHTjy5Vr

点击中间区域
呼出菜单
上一章
目录
下一章
×