撰文|
丽贝卡·伦纳(Rebecca Renner)
翻译|
王雯雯
人们希望能够通过对排放的碳进行捕集及封存来应对全球变暖的危机,这一技术听起来似乎有点不可思议,但美国已经对二氧化碳封存开展了首次实战演习,结果喜忧参半。
在美国得克萨斯州休斯顿市以东的地下深处,一项旨在解答二氧化碳地下封存的若干技术问题的研究项目正在收获第一批试验结果。科学家们希望通过这类碳捕集及封存技术缓解全球变暖的危机,同时不对当地环境造成损害。在这个被称为“弗里奥地层”的地质结构中,初步试验数据正在源源不断地产生,为碳封存的方方面面提供了有益的指导。
埋藏二氧化碳可能会成为遏制全球变暖的一项重要举措。美国劳伦斯利物莫国家实验室的地质学家朱里奥·弗里德曼说:“到2050年,各国的二氧化碳年埋藏量将达到5亿至10亿吨。”地下能够封存的二氧化碳,相当于全世界数十年的排放总量。
咸含水层是孔隙中充满了咸水的砂岩层,这是分布最广、潜力最大的封存候选地点之一。但是科学家们需要进一步了解它们的性质。美国劳伦斯伯克利国家实验室的萨莉·本森说:“我们知道如何注入二氧化碳。30年来,石油公司一直采用这种方式从枯竭的油井中挤榨出更多石油。不过,要向地层大量注入二氧化碳,并使之长期封存于地下,这样的技术细节我们还并不清楚。”
商业企业也做过相关尝试——挪威国家石油公司经营的一座北海海上天然气田,向厚实的咸含水层每年注入100万吨二氧化碳。不过美国得克萨斯大学奥斯汀分校的地质学家苏珊·霍沃尔卡指出,类似的尝试其实不太适合科学研究。她强调,要想改进模型,使之能够更准确地描述地下发生的变化过程,研究人员需要密切监控注入试验的进程;商业油气田的开采作业过于繁忙,无法进行这样的研究。
最早将二氧化碳泵入地下的,是北海上的
弗里奥实验项目便是在这种情况下启动的。2004年,这项由霍沃尔卡主持、投资金额达600万美元的项目,开始将3,000吨二氧化碳压缩为超临界流体,并加热到15摄氏度,然后泵入地下约1.6千米深处的一个厚达23米的砂岩层中。霍沃尔卡说,他们“想让二氧化碳渗入岩石的孔隙,并滞留在一些孔隙中,溶解在咸水里,甚至产生出一些新物质”,以此来困住二氧化碳。令她满意的是,三维地震成像技术等监测手段显示,几乎所有注入弗里奥地层的二氧化碳都被滞留在孔隙中,或者溶解在了咸水里。
封存二氧化碳:处于超临界流体状态的二氧化
但是霍沃尔卡和美国地质勘探局的地质化学家优素福·卡拉卡,还有他们的同僚们同时也发现,溶解在咸水中的二氧化碳让水变酸了。酸水又会溶解砂岩所含的一些矿物质,将其中的方解石和以铁为主的金属元素释放出来。这可能是好事,也可能是坏事。溶解部分岩石,为储藏二氧化碳提供了更多空间。但是释放出的金属元素可能会迁移至地面,对环境造成危害。例如,一些咸含水层可能含有砷和铀,对于这些元素,最好让它们一直沉睡在地下。
不过卡拉卡声称,咸含水层仍然是封存碳的极佳地点,在密闭性好的含水层里,这样的流体不会逸出。他指出,酸化的咸水可能会腐蚀水泥,因此在建造注气井时,必须使用抗酸的水泥,而那些陈旧的废弃井道必须严格禁用。
美国麻省理工学院的化学工程师霍华德·赫尔佐克认为,弗里奥的数据还有助于评估其他的试验地点。他说:“一方面,该实验能帮助我们精挑细选出最佳的封存地点;另一方面,它也有助于积累知识,以便将碳封存技术推广,应用到许多情况各异的地点。”他补充说,关于二氧化碳如何在地层中渗透的详细数据,只能通过像弗里奥这样的研究项目得出。
霍沃尔卡和她的同事们也许需要抓紧工作:碳封存的商业化即将来临。2006年夏天,日本公开了他们的计划,打算到2020年每年封存2亿吨二氧化碳。石油巨头英国石油公司计划在洛杉矶附近建成一座耗资10亿美元的石油焦转化厂,将石油焦这种精炼原油时的副产物转化为氢,并每年封存约400万吨二氧化碳。