如盘面16所示。我们观察宫9,发现G9和I7这两格的候选数都是2和3(利用摒除法排除掉候选数)。这两个单元格刚好可以放下这两个数字,要么G9=2、I7=3;要么G9=3、I7=2,而且也只有这两种情况。无论是哪种情况,宫9内的其他位置都不得填2和3了。因此,可以直接删除掉H9(2)、I8(3)、I9(2,3)。此时,我们就称G9和I7内的候选数2和3构成数对。
盘面16
这种方法和唯余法有一点像,唯一余数法里面,在1个单元格内只有1种填数情况;而这个解法里面,在2个单元格内有2种填数情况。所以,它的名字类比于“唯一余数法”,被叫作数对唯余法或显性数组。而删除候选数的过程,我们称为删数。相反,得到数字的过程我们称为出数。
另外,我们一般用符号“{}”来列举出一个数组内的所有元素,即这里的“由2和3组成的数对”就可以简单记作“数对{23}”,但是数字间并没有逗号分隔它们,即并没有写作“{2,3}”,这是因为在标准数独中,仅用到1~9这9个数字,并不会出现多位数,因此并不需要用逗号隔开每个数字,也能够区分各个元素。
符号“{}”并不只用于描述数组,还可以描述某格里面的候选数组成的一个集合。例如,单元格I9存在候选数2、3、6、9,就可以简记作“I9={2369}”。
另外,此处盘面中加圆圈数字表示技巧涉及的数字,加叉号数字则表示删数情况,后同,将不再说明。
此处再给出一个例子,大家可以尝试寻找一下。
盘面17
盘面17有两个显性数组,都比较好观察,可以练习一下。
回顾一下数对的定义:在同一个单元内,有2个单元格内有2种不同数字可以填,那么它们被称为数对。那么不止2个的情况有没有呢?这当然是有的。
所以,当然可以拓展到3个。下面就是一个例子。