购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

注释

§4.1

[4.1] 这些结果见练习[4.2]。

§4.2

[4.2] 这是任何单参数 z 的复多项式因式分解为线性因子

a 0 + a 1 z + a 2 z 2 +…+ a n z n = a n z b 1 )( z b 2 )…( z b n

的直接结果, **〔2.1〕 这个结果通常称为“代数基本定理”。

[4.3] 有个故事说,在卡尔达诺发誓保守秘密的条件下,塔尔塔利亚曾将这个部分解透露给卡尔达诺。这样,如果信守诺言,卡尔达诺就不能发表他的一般解。然而在这之后,1543年,卡尔达诺到波伦亚作了次旅行,检查了费罗的遗稿并确信,这些解实际上是费罗的遗产。卡尔达诺认为这给了他发表所有这些结果的自由。1545年,卡尔达诺在《大术》一书中发表了这些结果(并对塔尔塔利亚和费罗表示了致谢)。塔尔塔利亚不同意这种做法,这场争论产生了非常恶劣的后果(见Wykes 1969)。

[4.4] 进一步了解请见van der Waerden(1985)。

[4.5] 其理由是,我们将两个彼此 复共轭 的复数相加(见§10.1),得到的和总是一个实数。

§4.3

[4.6] 从注释2.4可知,0 -1 ,这种非法运算的“结果”可以方便地表示为“0 -1 =∞”。

[4.7] “严格”意味着端点值不包括在这个范围内。

[4.8] 进一步信息见,例如,Hardy(1940)。

§4.4

[4.9] 例如,见Priestley(2003),71页——指“收敛半径”——和Needham(2002),67页,264页。

*〔4.1〕 做做看。

**〔4.2〕 验证这一点,相关法则为 w + z = z + w w +( u + z )=( w + u )+ z wz = zw w uz )=( wu z w u + z )= wu + wz w +0= w w 1= w

*〔4.3〕 验证这一点。

〔1〕 Tartaglia,意为“口吃者”。——译注

*〔4.4〕 你能看出如何验证这个表达式吗?

*〔4.5〕 你能看出这两个级数之间具有简单关系的基本原因吗?

**〔4.6〕证明这一点。( 提示 :证明,只要用 z = b 是给定方程的解,那么这个多项式“除以” z b 就不会有余项。) y0Mn9dMxeedpObPrHD2FtgDpxybYfLcEu7f/J2buL4BoJIqnzQcaMdbuyhd4nhKl

点击中间区域
呼出菜单
上一章
目录
下一章
×