赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。
赵爽研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀算经》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。该书简明扼要地总结出中国古代勾股算术的深奥原理。
其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。它详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。
即2ab+(b-a) 2 =c 2 ,化简便得a 2 +b 2 =c 2 。其基本思想是图形经过割补后,面积不变。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。
勾股定理(这里以a,b,c分别代表直角三角形的勾、股、弦三边之长)a 2 +b 2 =c 2 及其变形b 2 =c 2 -a 2 =(c-a)(c+a),a 2 =c 2 -b 2 =(c-b)(c+b),c 2 =2ab+(b-a) 2 ;
又通过开平方
a 2 +(b-a)a=1/2[c 2 -(b-a) 2 ]求勾a
开平方 求勾a。
开带从平方(c-a) 2 +2a(c-a)=c 2 -a 2 求勾弦差c-a的方法,以及:
c=(c-a)+a,c+a=b 2 /(c-1),c-a=b 2 /(c+a),c=[(c-a) 2 +b 2 ]/2(c+a),a=[(c+a) 2 -b 2 ]/2(c+a)等公式,与上述公式对称,也有求b,c-b,c+b及由c-b,c+b求c,b的公式,又有由勾弦差、股弦差求勾、股、弦的公式:
以及勾股差b-a与勾股并b+a的关系式
进而由此给出了求a,b的公式b=1/2[(a+b)+(b-a)],a=1/2[(a+b)-(b-a)],最后给出了由弦与勾(或股)表示的股(或勾)弦并与股(或勾)弦差之差:
赵爽用出入相补方法对上述公式作了证明。这些公式大都与《九章算术》及其刘徽注所阐述的相同,证明方法也类似,只是最后两个公式为刘徽注。
他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。
此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的证明。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。