由前三个英文字母拼合而成的“ABC”一词据说自13世纪起便见诸文献了,含义为“入门”。这些年随着英文在中国的流行,该词在中文世界里也夺得了一席之地,出现在了很多图书的书名中,大有跟中文词“入门”一较高下之势。不过,倘若你在数学文献中看到一个以“ABC”命名的猜想——“ABC猜想”(ABC conjecture),千万不要以为那是一个“入门”级别的猜想。事实上,这一猜想在公众知名度方面或许尚处于“入门”阶段,以难度和地位而论却绝不是“入门”级别的。
在本文中,我们将对这一并非“入门”级别的猜想做一个“入门”级别的介绍。
在介绍之前,让我们先回忆一下中小学数学中的两个简单概念。其中第一个概念是素数(prime number)。我们知道,很多正整数可以分解为其他——即不同于它自己的——正整数的乘积,比如9=3×3,231=3×7×11,等等。但也有一些正整数不能这么分解,比如13,29等。这后一类正整数——1除外——就是所谓的素数。素数是一个被称为“数论”(number theory)的数学分支中的核心概念,其地位常被比喻为物理学中的原子(atom),因为与物理学中物质可以分解为原子相类似,数学中所有大于1的正整数都可以分解为素数的乘积(素数本身被视为是自己的分解) [2] 。第二个概念则是互素(co-prime)。两个正整数如果其素数分解中不存在共同的素数,就称为是互素的,比如21=3×7和55=5×11就是互素的 [3] 。
有了这两个简单概念,我们就可以介绍ABC猜想了。ABC猜想针对的是满足两个简单条件的正整数组( A,B,C ) [4] 。其中第一个条件是 A 和 B 互素,第二个条件是 A + B = C 。显然,满足这种条件的正整数组——比如(3,8,11)、(16,17,33)……——有无穷多个(请读者自行证明)。为了引出ABC猜想,让我们以(3,8,11)为例,做一个“三步走”的简单计算:
(1)将A、B、C乘起来(结果是3×8×11=264);
(2)对乘积进行素数分解(结果是264=2 3 ×3×11);
(3)将素数分解中所有不同的素数乘起来(结果是2×3×11=66)。
现在,让我们将 A、B、C 三个数字中较大的那个(即 C )与步骤3的结果比较一下。我们发现后者大于前者(因为后者为66,前者为11)。读者可以对上面所举的另一个例子——即(16,17,33)——也试一下,你会发现同样的结果。如果随便找一些其他例子,你也很可能发现同样的结果。
但你若因此以为这是规律,那就完全错了,因为它不仅不是规律,而且有无穷多的反例。比如(3,125,128)就是一个反例(请读者自行验证)。但是,数学家们猜测,如果把步骤3的结果放大成它的一个大于1的幂,那个幂哪怕只比1大上一丁点儿(比如1.000 000 000 01),情况就有可能大不一样。这时它虽仍未必保证能够大于三个数字中较大的那个(即 C ),但反例的数目将由无穷变为有限。这个猜测就是所谓的ABC猜想 [5] ,它是由英国数学家麦瑟尔(David Masser)和法国数学家厄斯特勒(Joseph Oesterlé)于20世纪80年代中期彼此独立地提出的。“ABC”这个毫无创意的名字——大家可能猜到了——则是来自把猜想中涉及到的三个数字称为A、B、C的做法,而非“入门”之意。
与数学猜想大家庭中的著名成员,如黎曼猜想(Riemann hypothesis)、哥德巴赫猜想(Goldbach conjecture)、孪生素数猜想(twin prime conjecture),以及(已被证明了的)曾经的费马猜想(Fermat conjecture)、四色猜想(four-color conjecture)等相比,ABC猜想的“资历”是很浅的(其他那些猜想都是百岁以上的“老前辈”),公众知名度也颇有不及,但以重要性而论,则除黎曼猜想外,上述其他几个猜想都得退居其后。
ABC猜想有一个在普通人看来并不奥妙的特点,就是将整数的加法性质(比如 A+B=C )和乘法性质(比如素数概念——因为它是由乘法性质所定义的)交互在了一起。不过,数学家们早就知道,由这两种本身很简单的性质交互所能产生的复杂性是近乎无穷的。数论中许多表述极为浅显,却极难证明的猜想(或曾经的猜想),比如前面提到的哥德巴赫猜想、孪生素数猜想、费马猜想等都具有这种加法性质和乘法性质相交互的特性。数论中一个很重要的分支——旨在研究整系数代数方程的整数解的所谓丢番图分析(Diophantine analysis)——更是整个分支都具有这一特性。丢番图分析的困难性是颇为出名的,著名德国数学家希尔伯特(David Hilbert)曾乐观地希望能找到其“一揽子”的解决方案,可惜这个被称为希尔伯特第十问题的希望后来落了空,被证明是不可能实现的(对这一点感兴趣的读者可参阅拙作《小楼与大师:科学殿堂的人和事》中的《希尔伯特第十问题漫谈》一文)。与希尔伯特的乐观相反,美国哥伦比亚大学(Columbia University)的数学家戈德菲尔德(Dorian Goldfeld)曾将丢番图分析比喻为飞蝇钓(fly-fishing)——那是发源于英国贵族的一种特殊的钓鱼手法,用甩出去的诱饵模拟飞蝇等昆虫的飞行姿态,以吸引凶猛的掠食性鱼类。飞蝇钓的特点是技巧高、难度大、成功率低,而且只能一条一条慢慢地钓——象征着丢番图分析只能一个问题一个问题慢慢地啃,而无法像希尔伯特所希望的那样“一揽子”地解决掉。
但是,与交互了加法性质和乘法性质的其他猜想或问题不同的是,ABC猜想这个从表述上看颇有些拖泥带水(因为允许反例)的猜想似乎处于某种中枢地位上,它的解决将直接导致一大类其他猜想或问题的解决。拿丢番图分析来说,戈德菲尔德就表示,假如ABC猜想能被证明,丢番图分析将由飞蝇钓变为最强力——乃至野蛮——的炸药捕鱼,一炸就是一大片,因为ABC猜想能“将无穷多个丢番图方程转变为单一数学命题”。这其中最引人注目的“战利品”将是曾作为猜想存在了300多年,一度被《吉尼斯世界纪录》( Guinness Book of World Records )称为“最困难数学问题”的费马猜想。这个直到1995年才被英国数学家怀尔斯(Andrew Wiles)以超过100页的长篇论文所解决的猜想在ABC猜想成立的前提下,将只需不到一页的数学推理就能确立 [6] 。其他很多长期悬而未决的数学猜想或问题也将被“一锅端”。这种与其他数学命题之间的紧密联系是衡量一个数学命题重要性的首要“考评”指标,ABC猜想在这方面无疑能得高分——或者用戈德菲尔德的话说,是“丢番图分析中最重要的未解决问题”,“是一种美丽”。
ABC猜想的重要性吸引了很多数学家的兴趣,但它的艰深迟滞了取得进展的步伐。截至2001年,数学家们在这一猜想上取得的最好结果乃是将上述步骤3的结果放大成它的某种指数函数 [7] 。由于指数函数的大范围增长速度远比幂函数快得多,由它来保证其大于 A、B、C 三个数字中较大的那个(即 C )当然要容易得多(相应地,命题本身则要弱得多)。
除上述理论结果外,自2006年起,由荷兰莱顿大学(Leiden University)的数学系牵头,一些数学和计算机爱好者建立了一个名为ABC@Home的分布式计算(distributed computing)系统,用以寻找ABC猜想所允许的反例。截至2014年4月,该系统已经找到了超过2 380万个反例,而且还在继续增加着。不过,与这一系统的著名“同行”——比如寻找外星智慧生物的SETI以及计算黎曼ζ函数非平凡零点的已经关闭了的ZetaGrid——不同的是,ABC@Home是既不可能证明,也不可能否证ABC猜想的(因为ABC猜想本就允许数量有限的反例)。从这个意义上讲,ABC@Home的建立更多地只是出于对具体反例——尤其是某些极端情形下的反例,比如数值最大的反例——的好奇。当然,具体反例积累多了,是否会衍生出有关反例分布的猜想,也是不无趣味的悬念。另外,ABC猜想还有一些拓展版本,比如对某些情形下的反例数目给出具体数值的版本,ABC@Home对那种版本原则上是有否证能力的。
如前所述,ABC猜想的公众知名度与一些著名猜想相比是颇有不及的。不过,2012年9月初,包括《自然》( Nature )、《科学》( Science )在内的一些重量级学术刊物,以及包括《纽约时报》( New York Times )在内的许多著名媒体却纷纷撰写或转载了有关ABC猜想的消息,使这一猜想在短时间内着实风光了一番。促成这一风光的是日本数学家望月新一(Shinichi Mochizuki)。2012年8月底,望月新一发表了由四篇长文组成的系列论文的第四篇,宣称证明了包括ABC猜想在内的若干重要猜想。这一宣称被一些媒体称为是能与1993年怀尔斯宣称证明了费马猜想,以及2002年佩雷尔曼(Grigory Perelman)宣称证明了庞加莱猜想(Poincaré conjecture)相提并论的事件。
由于这一原因,我应约撰写本文时,约稿编辑曾希望我能找认识望月新一的华人数学家聊聊,挖出点独家新闻来。可惜我不得不有负此托了,因为别说是我,就连《纽约时报》等擅挖材料的重量级媒体在报道望月新一其人时,也基本没能超出他在自己网站上公布的信息。
按照那些信息,望月新一1969年3月29日出生于日本东京,16岁(即1985年)进入美国普林斯顿大学(Princeton University)就读本科,三年后进入研究生院,师从著名德国数学家、1986年菲尔茨奖(Fields Medal)得主法尔廷斯(Gerd Faltings),23岁(即1992年)获得数学博士学位。此后,他先是“海归”成京都大学(Kyoto University)数理解析研究所(Research Institute for Mathematical Sciences)的研究助理(Research Associate),几个月后又前往美国哈佛大学从事了近两年的研究,然后重返京都大学。2002年,33岁的望月新一成为了京都大学数理解析研究所的教授。望月新一的学术声誉颇佳,曾获得过日本学术奖章(Japan Academy Medal)等荣誉。
有关望月新一其人的信息大体就是这些,但读者不必过于失望,因为望月新一所宣称的对ABC猜想的证明虽引起了很大关注,离公认还颇有距离,因此目前恐怕还未到挖掘其生平的最佳时机。事实上,在ABC猜想并不漫长的历史中,这并不是第一次有人宣称解决了这一猜想。2007年,法国数学家施皮罗(Lucien Szpiro)就曾宣称解决了ABC猜想。施皮罗的学术声誉不在望月新一之下,不仅是领域内的专家,其工作甚至间接促成了ABC猜想的提出。但是,人们很快就在他的证明中发现了漏洞。这种宣称解决了一个重大数学猜想,随后却被发现漏洞的例子在数学史上比比皆是。因此,任何证明从宣称到公认,必须经过同行的严格检验。这一检验视证明的复杂程度而定,可长可短。不过对于望月新一的“粉丝”来说,恐怕得有长期等待的心理准备,因为望月新一那四篇论文的总长度超过了500页,几乎是怀尔斯证明费马猜想的论文长度的四倍!更糟糕的是,望月新一的证明采用了他自己发展起来的数学工具,这种工具据说是对以抽象和艰深著称的1966年菲尔兹奖得主格罗滕迪克(Alexander Grothendieck)的某些代数几何方法的推广,除他本人外,数学界并无第二人通晓 [8] 。就连研究方向与望月新一相近的英国牛津大学(University of Oxford)的韩国数学家金明迥(Minhyong Kim)都表示,“我甚至无法对[望月新一的]证明给出一个专家概述,因为我并不理解它”,“仅仅对局势有一个一般了解也得花费一段时间”。美国威斯康星大学(University of Wisconsin)的数学家艾伦伯格(Jordan Ellenberg)则表示阅读望月新一的论文“仿佛是在阅读外星人的东西”(reading something from outer space)。2006年菲尔茨奖得主、澳大利亚数学家陶哲轩(Terence Tao)也表示“现在对这一证明有可能正确还是错误做出评断还为时过早”。
像望月新一那样宣称用自创的数学工具证明著名数学猜想的事例在数学界也是有先例的。2004年,美国普渡大学(Purdue)的数学教授德布朗基(Louisde Branges)宣称证明了著名的黎曼猜想,他所用的也是自创的数学工具。不过德布朗基在数学界的声誉和口碑均极差,加之年事已高(七旬老汉),其宣称遭到了数学界的冷淡对待 [9] 。与之不同的是,望月新一却不仅有良好的学术声誉,精力和研究能力也尚处于巅峰期。用陶哲轩的话说,望月新一“与佩雷尔曼和怀尔斯类似”,“是一个多年来致力于解决重要问题,在领域内享有很高声誉的第一流数学家”。有鉴于此,数学界不仅对望月新一的证明给予了重视,对他自创的方法也表示了兴趣,比如美国斯坦福大学(Stanford University)的数学家康拉德(Brian Conrad)就表示“激动人心之处不仅在于[ABC]猜想有可能已被解决,而且在于他[望月新一]必须引入的技巧和洞见应该是解决未来数论问题的非常有力的工具”。戈德菲尔德也认为“望月新一的证明如果成立,将是21世纪数学最惊人的成就”。
在这种兴趣的驱动下,一些数学家已经开始对望月新一的证明展开检验与讨论,比如著名数学讨论网站Math Overflow就已出现了一些有金明迥、陶哲轩等一流数学家参与的认真讨论。不过,检验过程何时才能完成,目前还不得而知,检验的结果如何,更是无从预料。证明得到公认固然是很多人乐意见到的,但一个长达500多页的证明存在漏洞也是完全可能的,当年怀尔斯对费马猜想的“只有”100多页的证明,其早期版本就存在过漏洞,经过一年多的时间才得以弥补。不过,无论望月新一的证明是否成立,不少数学家对ABC猜想本身的成立倒是都抱有乐观态度,这一方面是因为能因这一猜想的成立而得到证明的很多数学命题(比如如今被称为费马大定理的费马猜想)已经通过其他途径得到了证明,从而表明ABC猜想的成立与数学的其他部分有很好的相容性(著名的黎曼猜想也有这样的特点)。另一方面,ABC猜想还得到了一些启发性观点的支持,比如陶哲轩就从所谓的“概率启发式理由”(probabilistic heuristic justification)出发,预期ABC猜想应该成立 [10] 。
当然,信心和预期取代不了证明。望月新一证明的命运将会如何?ABC猜想究竟被证明了没有?都将有待时间来回答
[11]
。
2012年10月14日写于纽约
2014年10月1日最新修订
[1] 本文是应《南方周末》约稿而写的“ABC猜想”简介,曾以《望月“摘月”》为标题发表于2012年10月25日(发表稿经编辑改动,系删节版)。本文的完整版发表于《数学文化》2014年11月刊。
[2] 不仅如此,这样的分解还可以被证明是唯一的,这被称为算术基本定理(fundamental theorem of arithmetic)。
[3] 对这一定义还有一个小小的补充,即1被定义为与所有正整数都互素。
[4] 为了简单起见,我们的介绍是针对正整数的,但ABC猜想其实也可以针对整数进行表述,两者并无实质差别。我们将后者留给感兴趣的读者去做。
[5] 这里可以略作一点补充:步骤3的结果因不含任何素数因子的平方,被称为 A、B、C 三个数字乘积的“无平方部分”(square-free part),简记为sqp( ABC )——不过要注意的是,这一记号在某些文献中有不同含义,与本文含义相一致的另一种记号为rad( ABC )。用这一记号,ABC猜想可以表述为“对任意给定的 n >1,只有有限多组( A,B,C )满足sqp( ABC ) n <C”(当然,别忘了 A 和 B 互素及 A+B=C 这两个条件)。这一表述通常见诸科普介绍,在专业文献中ABC猜想往往被表述为“对任意给定的 n >1,sqp( ABC ) n / C 的下界大于零”。感兴趣的读者不妨由“科普表述”出发,证明一下“专业表述”(不过要提醒读者的是:相反方向的证明,即由“专业表述”证明“科普表述”,并不是轻而易举的)。另外要说明的是,正文提到的所谓ABC猜想所允许的“反例”乃是“科普表述”特有的提法,意指满足sqp( ABC ) n < C 的那有限多组( A,B,C ),在“专业表述”中是没有所谓“反例”的提法的。
[6] 这个关于在ABC猜想成立的前提下,费马猜想将只需“不到一页的数学推理就能确立”(establishing in less than a page of mathematical reasoning)的不无夸张的说法出自美国数学协会(Mathematical Association of America)的出版主管、著名美国数学科普作家彼得森(Ivars Peterson)。不过,该说法虽然夸张,却并非完全“忽悠”。为了说明这一点,并作为对如何由ABC猜想证明其他命题的演示,我们在这里介绍一个“不到一页的数学推理”:假设费马猜想不成立,即存在互素的(这点请读者自行证明)正整数 x、y、z 使得 x k +y k =z k ( k >2)。则由前一条注释给出的ABC猜想的“专业表述”可知(取 n = 7/6):sqp( x k y k z k ) 7/6 / z k >ε ( ε >0)。由于sqp( x k y k z k )=sqp( xyz )≤ xyz < z 3 ,因此 z 3,5-k > ε 。显然,对所有 k ≥4,只有小于(由 ε 决定的)某个数值的有限多个 z 能满足该不等式,而且当 k 大于(由 ε 决定的)某个数值后,将不会有任何z满足该不等式。这表明,对所有 k ≥4,费马猜想的反例即便有也只能有有限多个,而且 k 大到一定程度后将不再有反例。因此,证明费马猜想就变成了证明 k =3的情形(这在两百多年前就已完成),以及通过数值验证排除总数有限的反例。这虽然并非“不到一页的数学推理”就能确立的,比起怀尔斯的证明来毕竟是直截了当多了。倘若历史走的是不同的路径,费马是在ABC猜想被证明之后才提出的费马猜想,他那句戏剧性的“我发现了一个真正出色的证明,可惜页边太窄写不下来”倒是不无成立之可能。
[7] 具体地说,截至2001年,这方面的最好结果是exp[ K ·sqp( ABC ) 1/3+ ε ]/ C >1,其中 K 是与 ε 有关(但与 A、B、C 无关)的常数。
[8] 望月新一自创的那种数学工具被称为inter-universal Teichmuller theory或inter-universal geometry。他在其网站上则称自己为Inter-universal Geometer。
[9] 对此事感兴趣的读者可参阅拙作《黎曼猜想漫谈》的第35章。
[10] 陶哲轩的“概率启发式理由”的要点是将数论命题——比如一个数是素数——视为概率性命题,并利用概率工具来猜测数学命题的成立与否。这种做法的一个例子是对强孪生素数猜想成立的猜测(参阅收录于本书的拙作“孪生素数猜想”所介绍的有关该猜想的“简单的定性分析”)。
[11] 望月新一的证明发布至今已两年多,这期间美国耶鲁大学(Yale University)的数学系研究生季米特洛夫(Vesselin Dimitrov)及斯坦福大学(Stanford University)的数学家文卡塔斯(Akshay Venkatesh)曾写信向他指出过一个错误。望月新一承认了错误,但表示那是一个不影响结论的小错误。此后,他数度更新了自己的论文,截至本文修订之日(2014年10月1日),他更新后的四篇论文总长度超过了550页,最近一次更新的日期则为2014年9月15日。