每个人都知道,今天的世界和50年前是完全不一样的。这不同主要表现在哪里呢?如果用两个字来概括这50年中的差异,恐怕大多数人会说出“信息”这两个字。的确如此,今天的世界中,有恢宏无际的网络、漫天飞舞的电磁波,里面有多到要爆炸的信息,它们充满了世界的每个角落,随时可闻、无处不在。50年前有关通信的诸多梦想,如今都已成为现实。这一切可以用一句话来概括:人类迈入了信息社会。然而,是什么在支撑着这个信息社会呢?毋庸置疑,是近年来蓬勃发展、如日中天的各种高科技技术。其中包括各类计算机技术、软件、网络、通信、信息、人工智能、云计算……不胜枚举。而在这些形形色色、五花八门的技术后面,又有一个最基础和最重要的,那就是集成电路技术。
55年前,第一个半导体集成电路问世,由此为半导体产业带来了革命性的变化,也从而加快了各类技术的发展进程。1965年,与集成电路发明人之一罗伯特·诺伊斯(Robert Noyce)一起创办英特尔公司的戈登·摩尔(Gordon Moore),提出了著名的摩尔定律。他预言:集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,而集成电路的性能(计算能力)也将提升一倍。
几十年来,集成电路的演进似乎的确遵循着摩尔预言的这种指数规律。但是,仅仅依靠工程技术的演化,不可能将这种发展速度永远继续下去。近年来,摩尔定律面临挑战、遭遇瓶颈,集成电路在进一步发展的道路上,碰到了难以解决的问题。
集成电路的基础材料是半导体,其工作机制是默默隐藏于它背后、鲜有人知的物理原理。换言之,是基于量子理论建立起来的固体物理理论,赋予了集成电路技术“体积不断缩小、速度不断加快”的超级能力。电子技术几十年来突飞猛进的根源在于物理学中量子理论的成功。而如今,怎样才能拯救摩尔定律呢?可以用上中国人的一句老话:解铃还须系铃人。还是得回到基本物理的层面上,才有可能克服摩尔定律的瓶颈问题。
读了上面的文字,喜欢思考的你可能会冒出一大堆问题:什么物理原因造成了摩尔定律的危机?谁来拯救它?电子技术背后有哪些物理理论?相关的物理学家们当前在研究些什么热门课题?他们的研究成果能延续摩尔定律吗?
与电子技术同行,物理学也走过了它半个世纪的辉煌历程,当研究者们从工程界再转过头来回顾基础物理研究时,同样感到大吃一惊。物理学家们半个世纪的努力,正在初现端倪。20世纪中,前50年物理学的两个重大革命成果,即量子力学和相对论,正在被后50年以及新世纪十几年中越来越多的实验结果和天文观测现象所证实。理论物理学的研究方向,除了一如既往地“上穷碧落下黄泉”,追寻时空尺度极大和极小两个极端之外,也朝着复杂性的方向发展。这其中,混沌理论和凝聚态物理便是典型的例子。
50年前,集成电路刚出现时,大多数利用的是半导体物理的知识。50年后,从半导体物理及固体物理发展起来的凝聚态物理则更引起了专家们的关注。特别是凝聚态实验中发现的大量新型材料,各类性质奇特的物态,以及对常温下超导超流的研究,更是激发起人们对新功能材料无限的遐想和憧憬,为电子技术的变革开启了大门。
科学技术发展的历史证明,技术领域的危机往往是科学研究的契机。如前所述,集成电路的发展碰到了困难,而凝聚态物理研究中层出不穷、令人眼花缭乱的新成果、新物态,却有可能为电子技术发掘出优越的新型材料,从而解决工程技术的困难,挽救摩尔定律。
无论是工程上使用的半导体材料,还是凝聚态物理研究中形形色色的量子物态,电子运动的模式都在其中起着至关重要的作用。电子,这个美妙的舞者,按照量子力学的规律,在微观世界里跳着各种奇特的舞蹈!那么,电子在半导体中究竟是怎样舞蹈的呢?在不同量子态中,又如何才能充分发挥电子的更多、更奇特的内禀属性,比如自旋,让电子跳出更美妙、更有实用价值的舞蹈来?
为此,本书作者将带你探索这些问题的答案,与你走近与此有关的物理及工程领域。从回顾半导体以及电的历史开始,到三只脚的魔术师——晶体管的发明;从原子模型的历史演化,到热门的自旋电子学研究,再到目前的纳米技术以及凝聚态中的前沿进展,如量子霍尔效应、拓扑绝缘体等,本书中都有精彩的介绍。
第1章主要是回顾历史;第2章则以固体中的能带论为主线,描述电子如何在费米能级附近舞蹈,从物理角度解释半导体器件的工作原理;第3章介绍近年来发展起来的自旋电子学;第4章则讨论凝聚态物理中的各种量子霍尔态。
本书既讲科学,也说技术;既聊历史,也谈现状;既介绍科学家们所做的工作,也侃他们的趣闻轶事和个性生平。它不仅限于物理学,而是横跨了科学和技术多个领域。它不仅讲解电子器件,也深刻剖析其中的工作原理;既有半导体及凝聚态物理的历史,也有这些领域最新的发展状况。在讲述电子学历史的过程中,又介绍这些发现、发明背后隐藏的物理。此外,也介绍了近年来各种纳米新材料的基本概念、有趣性质,以及它们的应用和前景。
电子技术及物理科学的大门敞开着,等待年轻人的参与,但愿这本书能带你轻松入门。