
内容简介:差分隐私可以在不泄露数据集中具体个人信息的前提下,准确发布数据集的统计信息。本书详细阐述了差分隐私的理论基础、实际应用以及面临的挑战,覆盖具体算法和数学模型。全书分为三部分:第一部分介绍差分隐私的理论,详细解释了准备数据和执行差分隐私数据发布所需的各个概念;第二部分探讨差分隐私的应用,包括如何查询不同的数据格式(如搜索日志)以及在机器学习算法中添加差分隐私;第三部分则关注从业者需要了解的重要主题,例如理解隐私攻击、设置隐私参数以及部署首次差分隐私数据发布。本书适合数据管理人员、数据技术相关人员、安全领域技术人员等阅读。






