内容简介:本书致力于探索如何在大规模深度学习模型训练中,限度地提高性能和优化显存使用。本书面向深度学习从业者,尤其是希望深入了解并提升模型训练效率的工程师与研究人员。随着深度学习模型和数据规模的迅速增长,如何高效利用硬件资源,减少训练时间, 成为当前AI系统工程的关键挑战。 本书从硬件和软件的基础知识入手,逐步引导读者理解 和掌握PyTorch的优化技巧。内容涵盖从单机到分布式训练,从显存管理到性能分析的多种优化策略,力求通过丰富的代码实例和深入的原理讲解,使读者能够在实践中灵活应用这些 方法。